[1] Bertinetto L, Valmadre J, Henriques J F, et al. Fully-convolutional Siamese networks for object tracking[M]//Lecture Notes in Computer Science. Cham:Springer International Publishing, 2016:850-865.
[2] Valmadre J, Bertinetto L, Henriques J, et al. End-to-end representation learning for correlation filter based tracking[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Hawaii:IEEE Press, 2017:2805-2813.
[3] Tao Ran, Gavves E, Smeulders A W M. Siamese instance search for tracking[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas:IEEE Press, 2016:1420-1429.
[4] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90.
[5] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409. 1556, 2014.
[6] Wu Yi, Lim J, Yang M H. Online object tracking:a benchmark[C]//2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland:IEEE Press, 2013:2411-2418.
[7] Mueller M, Smith N, Ghanem B. A benchmark and simulator for UAV tracking[M]//Computer Vision-ECCV 2016. Cham:Springer International Publishing, 2016:445-461.
[8] Deng J, Dong W, Socher R, et al. ImageNet:a large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami:IEEE Press, 2009:248-255.
[9] He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas:IEEE Press, 2016:770-778.
[10] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston:IEEE Press, 2015:1-9.
[11] Li Xiaoxu, Yu Liyun, Chang Dongliang, et al. Dual cross-entropy loss for small-sample fine-grained vehicle classification[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5):4204-4212.
[12] Ma Z, Chang D, Li X. Channel max pooling layer for fine-grained vehicle classification[J]. arXiv preprint arXiv:1902. 11107, 2019.
[13] Huang Gao, Liu Zhuang, van der Maaten L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Hawaii:IEEE Press, 2017:4700-4708.
[14] Hu Jie, Shen Li, Sun Gang. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE Press, 2018:7132-7141.
[15] Nair V, Hinton G E. Rectified linear units improve restricted boltzmann machines[C]//Proceedings of the 27th International Conference on Machine Learning (ICML-10). Haifa, Israel:[s.n.], 2010:807-814.
[16] Russakovsky O, Deng Jia, Su Hao, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3):211-252.
[17] He Anfeng, Luo Chong, Tian Xinmei, et al. A twofold Siamese network for real-time object tracking[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE Press, 2018:4834-4843.
[18] Hu Jie, Shen Li, Sun Gang. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE Press, 2018:7132-7141. |