[1] Boaretto N, Centeno T M. Automated detection of welding defects in pipelines from radiographic images DWDI[J]. NDT & E International, 2017, 86:7-13.
[2] Kasban H, Zahran O, Arafa H, et al. Welding defect detection from radiography images with a cepstral approach[J]. NDT & E International, 2011, 44(2):226-231.
[3] Mery D, Berti M A. Automatic detection of welding defects using texture features[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2003, 45(10):676-681.
[4] Valavanis I, Kosmopoulos D. Multiclass defect detection and classification in weld radiographic images using geometric and texture features[J]. Expert Systems With Applications, 2010, 37(12):7606-7614.
[5] Wang Gang, Liao T. Automatic identification of different types of welding defects in radiographic images[J]. NDT & E International, 2002, 35(8):519-528.
[6] Kumar J, Anand R S, Srivastava S P. Flaws classification using ANN for radiographic weld images[C]//2014 International Conference on Signal Processing and Integrated Networks (SPIN). Amity:IEEE Press, 2014:145-150.
[7] Zapata J, Vilar R, Ruiz R. Automatic inspection system of welding radiographic images based on ANN under a regularisation process[J]. Journal of Nondestructive Evaluation, 2012, 31(1):34-45.
[8] Abouelatta, Ossama, et al. Classification of welding defects using gray level histogram techniques via neural network[J]. Mansoura Engineering Journal (MEJ), 2014, 39:M1-M13.
[9] Vilar R, Zapata J, Ruiz R. An automatic system of classification of weld defects in radiographic images[J]. NDT & E International, 2009, 42(5):467-476.
[10] Wang Xin. Recognition of welding defects in radiographic images by using support vector machine classifier[J]. Research Journal of Applied Sciences, Engineering and Technology, 2010, 2(3):295-301.
[11] Mu Weilei, Gao Jianmin, Jiang Hongquan, et al. Automatic classification approach to weld defects based on PCA and SVM[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2013, 55(10):535-539.
[12] Baniukiewicz P. Automated defect recognition and identification in digital radiography[J]. Journal of Nondestructive Evaluation, 2014, 33(3):327-334.
[13] Chen Benzhi, Fang Zhihong, Xia Yong, et al. Accurate defect detection via sparsity reconstruction for weld radiographs[J]. NDT & E International, 2018, 94:62-69.
[14] 王明泉, 杨静, 李志刚, 等. 薄壁焊缝X射线图像缺陷的自动提取与分割[J]. 计算机工程与应用, 2007, 43(33):237-239, 245. Wang Mingquan, Yang Jing, Li Zhigang, et al. Automatic defect extraction and segmentation in X-ray images of welding seam[J]. Computer Engineering and Applications, 2007, 43(33):237-239, 245.
[15] GB/T 3323-2005, Radiographic examination of fusion welded butt joints in steel[S]. BSI British Standards. DOI:10.3403/30307847u.
[16] 张晓光, 孙正, 胡晓磊, 等. 射线检测图像中焊缝和缺陷的提取方法[J]. 焊接学报, 2011:0253-360X. Zhang Xiaoguang, Sun Zheng, Hu Xiaolei, et al. Extraction method of welding scam and defect in ray testing image[J]. Transactions of the China Welding Institution, 2011:0253-360X.
[17] Ren Shaoqing, He Kaiming, Girshick R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
[18] Girshick R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision (ICCV). Santiago:IEEE Press, 2015:100-105.
[19] Liu Wei, Anguelov D, Erhan D, et al. SSD:single shot MultiBox detector[M]//Computer Vision-ECCV 2016. Cham:Springer International Publishing, 2016:21-37. DOI:10.1007/978-3-319-46448-0_2.
[20] He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deepresidual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas:IEEE Press, 2016:105-110. |