[1] Cornacchia M, Ozcan K, Zheng Y, et al.A survey on activity detection and classification using wearable sensors[J].IEEE Sensors Journal, 2016, 17(2):386-403.
[2] Matthews C E, George S M, Moore S C, et al.Amount of time spent in sedentary behaviors and cause-specific mortality in us adults[J].American Journal of Clinical Nutrition, 2012, 95(2):437.
[3] Katzmarzyk P T, Lee I.Sedentary behaviour and life expectancy in the USA:a cause-deleted life table analysis[J].BMJ Open, 2012, 2(4):808-816.
[4] Camhi S M, Sisson S B, Johnson W D, et al.Accelerometer-determined moderate intensity lifestyle activity and cardiometabolic health[J].Preventive Medicine, 2011, 52(5):358-360.
[5] Figo D, Diniz P C, Ferreira D R, et al.Preprocessing techniques for context recognition from accelerometer data[J].Personal & Ubiquitous Computing, 2010, 14(7):645-662.
[6] Chen Z H, Zhu Q C, Yeng C S, et al.Robust human activity recognition using smartphone sensors via CT-PCA and online SVM[J].IEEE Transactions on Industrial Informatics, 2017, 13(6):3070-3080.
[7] Wang Aiguo, Chen Guilin, Yang Jing, et al.A comparative study on human activity recognition using inertial sensors in a smartphone[J].IEEE Sensors Journal, 2016, 16(11):4566-4578.
[8] 李亚, 王广润, 王青.基于深度卷积神经网络的跨年龄人脸识别[J].北京邮电大学学报, 2017, 40(1):84-88.Li Ya, Wang Guangrun, Wang Qing.A deep joint learning approach for age invariant face verification[J].Journal of Beijing University of Posts and Telecommunications, 2017, 40(1):84-88.
[9] Sheeba P T, Murugan S.Hybrid features-enabled dragon deep belief neural network for activity recognition[J].The Imaging Science Journal, 2018, 66(6):355-371.
[10] Cheng F C, Zhang H, Fan W J, et al.Image recognition technology based on deep learning[J].Wireless Personal Communications, 2018(C):1-17.
[11] Ronao C A, Cho S B.Human activity recognition with smartphone sensors using deep learning neural networks[J].Expert Systems with Applications, 2016(59):235-244.
[12] Tao Dapeng, Wen Y G, Hong Richang.Multi-column bi-directional long short-term memory for mobile devices-based human activity recognition[J].IEEE Internet of Things Journal, 2016, 3(6):1124-1134.
[13] Ordóñez F J, Roggen D.Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition[J].Sensors, 2016, 16(1):115-140.
[14] Chen Z H, Zhang L, Cao Z G, et al.Distilling the knowledge from handcrafted features for human activity recognition[J].IEEE Transactions on Industrial Informatics, 2018, 14(10):4334-4342.
[15] Alejandro B, Yago S, Pedro I.Evolutionary design of convolutional neural networks for human activity recognition in sensor-rich environments[J].Sensors, 2018, 18(4):1288-1312.
[16] Sheng Min, Jiang Jing, Su Benyue, et al.Short-time activity recognition with wearable sensors using convolutional neural network[C]//ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry.New York:ACM, 2016:413-416.
[17] Lee S M, Yoon S M, Cho H.Human activity recognition from accelerometer data using convolutional neural network[C]//IEEE International Conference on Big Data and Smart Computing.Jeju:IEEE, 2017:131-134.
[18] 沈延斌, 陈岭, 郭浩东, 等.基于深度学习的放置方式和位置无关运动识别[J].浙江大学学报(工学版), 2016, 50(6):1141-1148.Shen Yanbin, Chen Ling, Guo Haodong, et al.Deep learning based activity recognition independent of device orientation and placement[J].Journal of Zhejiang University (Engineering Science), 2016, 50(6):1141-1148.
[19] Bagct U, Bai L.A comparison of daubechies and gabor wavelets for classification of MR images[C]//IEEE International Conference on Signal Processing and Communications.Dubai:IEEE, 2008:676-679.
[20] Liu Cihang, Zhang Lan, Liu Zongqian, et al.Lasagna:towards deep hierarchical understanding and searching over mobile sensing data[C]//International Conference on Mobile Computing and Networking.New York:ACM, 2016:334-347.
[21] Simonyan K, Zisserman A.Very deep convolutional networks for large-scale image recognition[EB/OL].(2015-04-10)[2018-08-20].https://arxiv.org/pdf/1409.1556.pdf.
[22] Kwapisz J R, Weiss G M, Moore S A.Activity recognition using cell phone accelerometers[J].ACM Sigkdd Explorations Newsletter, 2011, 12(2):74-82.
[23] 李锋, 潘敬奎.基于三轴加速度传感器的人体运动识别[J].计算机研究与发展, 2016, 53(3):621-631.Li Feng, Pan Jingkui.Human motion recognition based on triaxial accelerometer[J].Journal of Computer Research and Development, 2016, 53(3):621-631.
[24] Xia Qishou, Ying Xiaoling, He Juan, et al.Real-time recognition of human daily motion with smartphone sensor[J].International Journal of Performability Engineering, 2018, 14(4):593-602. |