[1] Garofalakis M, Gehrke J, Rastogi R. Querying and mining data streams:you only get one look a tutorial[C]//Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data. ACM, 2002:635-635.
[2] Rosch E H. Natural categories[J]. Cognitive Psychology, 1973, 4(3):328-350.
[3] Hoens T R, Polikar R, Chawla N V. Learning from streaming data with concept drift and imbalance:an overview[J]. Progress in Artificial Intelligence, 2012, 1(1):89-101.
[4] Shao J, Ahmadi Z, Kramer S. Prototype-based learning on concept-drifting data streams[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2014:412-421.
[5] Domingos P, Hulten G. Mining high-speed data streams[C]//Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data mining. ACM, 2000:71-80.
[6] Hulten G, Spencer L, Domingos P. Mining time-changing data streams[C]//Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2001:97-106.
[7] Bifet A, Gavaldà R. Adaptive learning from evolving data streams[C]//International Symposium on Intelligent Data Analysis. Berlin Heidelberg:Springer, 2009:249-260.
[8] Liu G, Cheng H, Qin Z, et al. E-CVFDT:An improving CVFDT method for concept drift data stream[C]//Communications, Circuits and Systems (ICCCAS), 2013 International Conference on. IEEE, 2013, 1:315-318.
[9] Buntine W. Learning classification trees[J]. Statistics and Computing, 1992, 2(2):63-73.
[10] Pfahringer B, Holmes G, Kirkby R. New options for hoeffding trees[C]//Australasian Joint Conference on Artificial Intelligence. Berlin Heidelberg:Springer, 2007:90-99.
[11] Bifet A, Holmes G, Pfahringer B, et al. New ensemble methods for evolving data streams[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris:ACM, 2009:139-148.
[12] Kubát M. Floating approximation in time-varying knowledge bases[J]. Pattern Recognition Letters, 1989, 10(4):223-227.
[13] Bifet A, Gavalda R. Learning from Time-Changing Data with Adaptive Windowing[C]//SDM. 2007, 7:2007.
[14] Widmer G, Kubat M. Effective learning in dynamic environments by explicit context tracking[C]//European Conference on Machine Learning. Berlin Heidelberg:Springer, 1993:227-243.
[15] Alippi C, Boracchi G, Roveri M. Just in time classifiers:managing the slow drift case[C]//2009 International Joint Conference on Neural Networks. Atlanta:IEEE, 2009:114-120.
[16] Street W N, Kim Y S. A streaming ensemble algorithm (SEA) for large-scale classification[C]//Proceedings of the seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco:ACM, 2001:377-382.
[17] Kolter J Z, Maloof M A. Dynamic weighted majority:A new ensemble method for tracking concept drift[C]//Proceedings of the Third IEEE International Conference on Data Mining. Washington DC:IEEE, 2003:123-130.
[18] Chu F, Zaniolo C. Fast and light boosting for adaptive mining of data streams[C]//Pacific-Asia Conference on Knowledge Discovery and Data Mining. Berlin Heidelberg:Springer, 2004:282-292.
[19] Brzezinski D, Stefanowski J. Reacting to different types of concept drift:The accuracy updated ensemble algorithm[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(1):81-94.
[20] Brzezinski D, Stefanowski J. Combining block-based and online methods in learning ensembles from concept drifting data streams[J]. Information Sciences, 2014, 265(5):50-67. |