[1] Wei V K. Generalized hamming weight for linear codes[J]. IEEE Tran Inform Theory, 1991,37(5):1412-1418. [2] Forney G D. Dimension/lenght profiles and trellis complexity of linear block codes[J]. IEEEE Trans Inform Theory, 1994,40(6):1741-1752. [3] Chen W D, Klφve T. Weight hierarchies of extremal non-chain binary codes of dimension 4[J]. IEEE Trans Inf Theory, 1999,45(1):276-281. [4] Chen W D, Klφve T. Weight hierarchies of q-ary codes of dimension 4[J]. IEEE Trans Inform Theory, 1996,42(7):2265-2272. [5] 王勇慧,陈文德. 4维3元近链线性码的重量谱[J]. 系统工程理论与实践,2003,23(11):71-77. Wang Y H, Chen W D. Weight hicrarchies of ternary codes of dimension 4 satisfying the near-chain condition[J]. System Engineering——Theory & Practice, 2003,23(11):71-77. [6] Chen W D, Klφve T. Weight hierarchies of linear codes satisfying the chain condition[J]. Designs, Codes and Cryptograph, 1998,11(1):47-66. [7] Luo Y, Chen W D, Fu F W. A new kind of geometric structures determining the chain good weight hierarchies[J]. Discrete Math, 2003,260(1):101-107. [8] Chen W D, Klφve T. Weight hierarchies of linear codes satisfying the almost chain condition[J]. Science in China, 2003,46(3):175-186. [9] 刘子辉. 线性码的重量谱[Z]. 北京:中国科学院数学与系统科学研究院,2003. Liu Z H. Weight hierarchies of linear codes[Z]. Beijing: Academy of Mathematics and System Sciences, Chinese Academy of Sciences, 2003. [10] 王勇慧.线性码的重量谱[Z].北京:中国科学院数学与系统科学研究院,2004. Wang Y H. Weight hierarchies of linear codes[Z]. Beijing: Academy of Mathematics and System Science, Chinese Academy Sciences, 2004. |