[1] Laurenson D, McLaughlin S, Sheikh A. A ray tracing approach to channel modeling for the indoor environment[J]. IEEE Trans on Vehicular Technology Conference, 1993, 33(3):246-249. [2] Seidel S Y, Rappaport T S. Site-specific propagation prediction forwireless in-building personal communication system design[J]. IEEE Trans on Vehicular Technology, 1994, 43(4): 879-891. [3] Lee J W H, Lai A K Y. FDTD analysis of indoor radio propagation[J]. IEEE Trans on Antennas and Propagation Society International Symposium, 1998, 45(3): 1 664-1 667. [4] Zhang Y P, Hwang Y. Theory of the radio-wave propagation in railwaytunnels[J]. IEEE Trans on Vehicular Technology, 1998, 47(3): 1 027-1 036. [5] Wang Y, Safavi-Nacini S, Chaudhuri S K. A combined ray tracing and FDTD method for modeling indoor radio wave propagation[J]. IEEE Trans on Antennas and Propagation Society International Symposium, 1998, 45(3): 1 668-1 671. [6] Mur G. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equation[J]. IEEE Trans Electromgn Computer, 1981, EMC-23,377-382. [7] Wang Y, Safavi-Nacini S, Chaudhuri S K. A hybrid technique based oncombining ray tracing and FDTD methods for site-specific modeling of indoor radio wave propagation[J]. Antennas and Propagation, IEEE Transactions on, 2000,48(5): 743-754. [8] Horikoshi J, Tanaka K, Morinaga T. 1.2 GHz band wave propagation measurements in concrete building for indoor radio communications[J]. IEEE TransVeh Technol, 1986, 35(4):146-152. [9] Gedney S D. An anisotropic perfectly matched layer-absorbing mediumfor the truncation of FDTD lattices[J]. Antennas and Propagation, IEEE Transactions on, 1996, 44(12): 1 630-1 639. |