JOURNAL OF BEIJING UNIVERSITY OF POSTS AND TELECOM ›› 2015, Vol. 38 ›› Issue (2): 1-15.doi: 10.13190/j.jbupt.2015.02.001
• Review • Next Articles
A Survey of Recommendation Systems in Big Data
MENG Xiang-wu, JI Wei-yu, ZHANG Yu-jie
- Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunications, Beijing 100876, China
-
Received:
2014-12-29Online:
2015-04-28Published:
2015-05-14
CLC Number:
Cite this article
MENG Xiang-wu, JI Wei-yu, ZHANG Yu-jie. A Survey of Recommendation Systems in Big Data[J]. JOURNAL OF BEIJING UNIVERSITY OF POSTS AND TELECOM, 2015, 38(2): 1-15.
share this article
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.bupt.edu.cn/EN/10.13190/j.jbupt.2015.02.001
[1] 李国杰, 程学旗. 大数据研究: 未来科技及经济社会发展的重大战略领域—大数据的研究现状与科学思考[J]. 中国科学院院刊, 2012, 27(6): 647-657. Li Guojie, Cheng Xueqi. Research status and scientific thinking of big data[J]. Bulletin of Chinese Academy of Sciences, 2012, 27(6): 647-657.[2] Labrinidis A, Jagadish H V. Challenges and opportunities with big data[J]. Proceedings of the VLDB Endowment, 2012, 5(12): 2032-2033.[3] 孟祥武, 胡勋, 王立才, 等. 移动推荐系统及其应用[J]. 软件学报, 2013, 24(1): 91-108. Meng Xiangwu, Hu Xun, Wang Licai, et al. Mobile recommender systems and their applications[J]. Journal of Software, 2013, 24(1): 91-108.[4] Ye Tao, Bickson D, Yan Qiang. Second workshop on large-scale recommender systems: research and best practice[C]//8th ACM Conference on Recommender Systems, 2014 ACM. Silicon Valley: ACM Press, 2014: 385-386.[5] 孟祥武, 王凡, 史艳翠, 等. 移动用户需求获取技术及其应用[J]. 软件学报, 2014, 25 (3): 439- 456. Meng Xiangwu, Wang Fan, Shi Yancui, et al. Mobile user requirements acquisition techniques and their applications[J]. Journal of Software, 2014, 25 (3): 439-456.[6] 王鑫, 黄忠义. 网络资源中基于K-Means 聚类的个性化推荐[J]. 北京邮电大学学报, 2014, 37(S1): 120-124. Wang Xin, Huang Zhongyi. Network resource personalized recommendation based on K-Means clustering[J]. Journal of Beijing University of Posts and Telecommunications, 2014, 37(S1): 120-124.[7] Hong Jongyi, Suh E H, Kim J, et al. Contextaware system for proactive personalized service based on context history[J]. Expert Systems with Applications, 2009, 36(4): 7448-7457.[8] Pessemier T D, Deryckere T, Martens L. Extending the Bayesian classifier to a context-aware recommender system for mobile devices[C]//Internet and Web Applications and Services (ICIW), 2010 Fifth International Conference on IEEE. Barcelona, Spain: IEEE Press, 2010: 242-247.[9] Shahabi C, Chen Yishin. An adaptive recommendation system without explicit acquisition of user relevance feedback[J]. Distributed and Parallel Databases, 2003, 14(2): 173-192.[10] 鄂海红, 宋美娜, 李川, 等. 结合时间上下文挖掘学习兴趣的协同过滤推荐算法[J]. 北京邮电大学学报, 2014, 37(6): 49-53. E Haihong, Song Meina, Li Chuan, et al. A collaborative filtering recommendation algorithm with time context for learning interest mining[J]. Journal of Beijing University of Posts and Telecommunications, 2014, 37(6): 49-53.[11] 王立才, 孟祥武, 张玉洁. 上下文感知推荐系统[J]. 软件学报, 2012, 23(1): 1-20. Wang Licai, Meng Xiangwu, Zhang Yujie. Context-aware recommender systems[J]. Journal of Software, 2012, 23(1): 1-20.[12] 程学旗, 靳小龙, 王元卓, 等. 大数据系统和分析技术综述[J]. 软件学报, 2014, 25(9): 1889-1908. Cheng Xueqi, Jin Xiaolong, Wang Yuanzhuo, et al. Survey on big data system and analytic technology[J]. Journal of Software, 2014, 25(9): 1889-1908.[13] 何清, 李宁, 罗文娟, 等. 大数据环境下的机器学习算法综述[J]. 模式识别与人工智能, 27(4): 327-336. He Qing, Li Ning, Luo Wenjuan, et al. A survey of machine learning algorithms for big data[J]. Patten Recognition and Aitificial Intelligence, 2014, 27(4): 327-336.[14] 印鉴, 王智圣, 李琪, 等. 基于大规模隐式反馈的个性化推荐[J]. 软件学报, 2014, 25(9): 1953-1966. Yin Jian, Wang Zhisheng, Li Qi, et al. Personalized recommendation based on largescale implicit feedback[J]. Journal of Software, 2014, 25 (9): 1953-1966.[15] Yang Diyi, Chen Tianqi, Zhang Weinan, et al. Local implicit feedback mining for music recommendation[C]//the 6th ACM Conference on Recommender Systems, 2012 ACM. Dublin: ACM Press, 2012: 91-98.[16] Rafailidis D, Nanopoulos A. Modeling the dynamics of user preferences in coupled tensor factorization[C]//the 8th ACM Conference on Recommender Systems, 2014 ACM. Silicon Valley: ACM Press, 2014: 321-324.[17] Oh K J, Lee W J, Lim C G, et al. Personalized news recommendation using classified keywords to capture user preference[C]//16th Advanced Communication Technology (ICACT), 2014 International Conference on IEEE. South Korea: IEEE Press, 2014: 1283-1287.[18] Takács G, Pilászy I, Németh B, et al. Scalable collaborative filtering approaches for large recommender systems[J]. The Journal of Machine Learning Research, 2009, 10(12): 623-656.[19] Bhagat S, Weinsberg U, Loannidis S, et al. Recommending with an agenda: active learning of private attributes using matrix factorization[J]. ArXiv Preprint ArXiv, 2013: 1311-1321.[20] 丁伟峰, 郑小林, 陈德人. 基于PureSVD模型的协同过滤主动采样[J]. 北京邮电大学学报, 2013, 36(4): 23-26. Ding Weifeng, Zheng Xiaolin, Chen Deren. Active sampling based on Pure SVD model for collaborative filtering[J]. Journal of Beijing University of Posts and Telecommunications, 2013, 36(4): 23-26.[21] Dror G, Koenigstein N, Koren Y, et al. The Yahoo! Music Dataset and KDD-Cup'11[C]//17th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2011 ACM SIGKDD. San Diego, CA: ACM Press, 2012: 8-18.[22] 涂丹丹, 舒承椿, 余海燕. 基于联合概率矩阵分解的上下文广告推荐算法[J]. 软件学报, 2013, 24 (3): 454-464. Tu Dandan, Shu Chengchun, Yu Haiyan. Using unified probabilistic matrix factorization for contextual advertisement recommendation[J]. Journal of Software, 2013, 24(3): 454-464.[23] Bauer J, Nanopoulos A. A framework for matrix factorization based on general distributions[C]//Proceedings of the 8th ACM Conference on Recommender Systems. Silicon Valley: ACM Press, 2014: 249-256.[24] Cheng Chen, Xia Fen, Zhang Tong, et al. Gradient boosting factorization machines[C]//Proceedings of the 8th ACM Conference on Recommender Systems. Silicon Valley: ACM Press, 2014: 265-272.[25] Pálovics R, Benczúr A A, Kocsis L, et al. Exploiting temporal influence in online recommendation[C]//Proceedings of the 8th ACM Conference on Recommender Systems. Silicon Valley: ACM Press, 2014: 273-280.[26] Schelter S, Boden C, Schenck M, et al. Distributed matrix factorization with mapreduce using a series of broadcast-joins[C]//Proceedings of the 7th ACM Conference on Recommender Systems. Hongkong: ACM Press, 2013: 281-284.[27] Diaz-Aviles E, Drumond L, Schmidt-Thieme L, et al. Real-time top-n recommendation in social streams[C]//Proceedings of the 6th ACM Conference on Recommender Systems. Dublin: ACM Press, 2012: 59-66.[28] Ge Yong, Xiong Hui, Tuzhilin A, et al. Costaware collaborative filtering for travel tour recommendations[J]. ACM Transactions on Information Systems (TOIS), 2014, 32(1): 4-28.[29] Golub G, Kahan K. Calculating the singular values and pseudo-inverse of a matrix[J]. Journal of the Society for Industrixal and Applied Mathematics, 1965, 2(2): 205-224.[30] Lee D D, Seung Hs. Algorithms for non-negative matrix factorization[C]//13th Advances in Neural Information Processing Systems, NIPS 2000. Denver, USA: MIT Press, 2000: 556-562.[31] Zheng V W, Zheng Yu, Xie Xing, et al. Towards mobile intelligence: learning from GPS history data for collaborative recommendation[J]. Artificial Intelligence, 2012, 184(6): 17-37.[32] Symeonidis P, Papadimitriou A, Manolopoulos Y, et al. Geo-social recommendations based on incremental tensor reduction and local path traversal[C]//Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Location-Based Social Networks. Chicago, USA: ACM Press, 2011: 89-96.[33] Koren Y. Collaborative filtering with temporal dynamics[J]. Communications of the ACM, 2010, 53(4): 89-97.[34] Salakhutdinov R, Mnih A. Probabilistic matrix factorization[C]//20th Advances in Neural Information Processing Systems, NIPS 2007. Vancouver, Canade: MIT Press, 2007, 20(3): 432-451.[35] 朱郁筱, 吕琳媛. 推荐系统评价指标综述[J]. 电子科技大学学报, 2012, 41(2): 163 -175. Zhu Yuxiao, Lü Linyuan. Evaluation metrics for recommender systems[J]. Journal of University of Electronic Science and Technology of China, 2012, 41(2): 163-175.[36] Isaacman S, Ioannidis S, Chaintreau A, et al. Distributed rating prediction in user generated content streams[C]//5th ACM Conference on Recommender Systems, 2011 ACM. Chicago: ACM Press, 2011: 69-76.[37] Bachrach Y, Finkelstein Y, Gilad-Bachrach R, et al. Speeding up the Xbox recommender system using a Euclidean transformation for inner- product spaces[C]//8th ACM Conference on Recommender Systems, 2014 ACM. Silicon Valley: ACM Press, 2014: 250-257.[38] Takács G, Tikk D. Alternating least squares for personalized ranking[C]//6th ACM Conference on Recommender Systems, 2012 ACM. Dublin: ACM Press, 2012: 83-90.[39] Zhuang Yong, Chin Weisheng, Juan Yuchin, et al. A fast parallel SGD for matrix factorization in shared memory systems[C]//7th ACM Conference on Recommender Systems, 2013 ACM. Hong Kong: ACM Press, 2013: 249-256.[40] Recht B, Ré C. Parallel stochastic gradient algorithms for large-scale matrix completion[J]. Mathematical Programming Computation, 2013, 5(2): 201-226.[41] Gemulla R, Nijkamp E, Haas P J, et al. Largescale matrix factorization with distributed stochastic gradient descent[C]//17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2011 ACM. San Diego: ACM Press, 2011: 69-77.[42] Petroni F, Querzoni L. GASGD: stochastic gradient descent for distributed asynchronous matrix completion via graph partitioning[C]//the 8th ACM Conference on Recommender Systems. Silicon Valley: ACM, 2014: 241-248.[43] Fazeli S, Loni B, Bellogin A, et al. Implicit vs explicit trust in social matrix factorization[C]//8th ACM Conference on Recommender Systems, 2014 ACM. Silicon Valley: ACM Press, 2014: 317-320.[44] McGinty L, Reilly J. On the evolution of critiquing recommenders[M]. US: Springer, 2011: 419-453.[45] Zhao Xin Wayne, Guo Yanwei, He Yulan, et al. We know what you want to buy: a demographic-based system for product recomme ndation on microblogs[C]//20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014 ACM. New York: ACM Press, 2014: 1935-1944.[46] Töscher A, Jahrer M. Collaborative filtering ens emble for ranking[J]. Journal of Machine Learning Research W&CP, 2012, 18: 61-74.[47] Guo Guibing. Integrating trust and similarity to ameliorate the data sparsity and cold start for recommender systems[C]//7th ACM Conference on Recommender Systems, 2013 ACM. Hong Kong: ACM Press, 2013: 451-454.[48] Zheng Yu, Xie Xing, Ma Weiying. GeoLife : a collaborative social networking service among user, location and trajectory[J]. IEEE Data Eng. Bull, 2010, 33(2): 32-39.[49] Zheng Yu, Zhang Lizhu, Xie Xing, et al. Mining interesting locations and travel sequences from GPS trajectories[C]//18th International Conference on World Wide Web , 2009 ACM. Spain: ACM Press, 2009: 791-800.[50] Zheng Yu, Li Quannan, Chen Yukun, et al. Understanding mobility based on GPS data[C]//10th International Conference on Ubiquitous Computing. Seoul, 2008 ACM. South Korea: ACM Press, 2008: 312-321.[51] Hu Bo, Ester M. Spatial topic modeling in online social media for location recommendation[C]//7th ACM Conference on Recommender Systems, 2013 ACM. Hong Kong: ACM Press, 2013: 25-32.[52] Yang Xiwang, Steck H, Guo Yang, et al. On top-k recommendation using social networks[C]//6th ACM Conference on Recommender Systems, 2012 ACM. Dublin: ACM Press, 2012: 67-74.[53] Zhang Kunpeng, Ouksel A, Fan Shaokun, et al. Scalable audience targeted models for brand advertising on social networks[C]//8th ACM Conference on Recommender Systems, 2014 ACM. Silicon Valley: ACM Press, 2014: 341- 344.[54] Wang Jing, Zhao Hui. Social group recommendation using topic models[J]. Journal of Chemical and Pharmaceutical Research, 2014, 6(7): 679-684.[55] Purushotham S, Kuo C C J, Shahabdeen J, et al. Collaborative group-activity recommendation in location-based social networks[C]//3rd ACM SIGSPATIAL International Workshop on Crowdsourced and Volunteered Geographic Information, 2014 ACM. Dallas: ACM Press, 2014: 8-15.[56] Naamani-Dery L, Kalech M, Rokach L, et al. Preference elicitation for narrowing the recommended list for groups[C]//8th ACM Conference on Recommender Systems, 2014 ACM. Silicon Valley: ACM Press, 2014: 333- 336.[57] Ferreira Cordeiro R L, Traina Junior C, Machado Traina A J, et al. Clustering very large multi-dimensional datasets with mapreduce[C]//17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2011 ACM. San Diego: ACM Press, 2011: 690-698.[58] Yu Yuantse, Huang Chungming, Lee Yuntz. An intelligent touring system based on mobile social network and cloud computing for travel recommendation[C]//28th International Conference on Advanced Information Networking and Applications Workshops(AINA), 2014 IEEE. Victoria, Canada: IEEE Press, 2014: 19-24.[59] Katkar V D, Kulkarni S V. A novel parallel implementation of naive Bayesian classifier for big data[C]//2013 International Conference on Green Computing, Communication and Conservation of Energy(ICGCE), 2013 IEEE. India: IEEE Press, 2013: 847-852.[60] Walunj S G, Sadafale K. An online recomm endation system for e-commerce based on apache mahout framework[C]//2013 Annual Conference on Computers and People Research, 2013 ACM. Cincinnati: ACM Press, 2013: 153-158.[61] Xu Shengwu, Xia Zhengyou. Hot news recommendation system across heterogonous websites using Hadoop[C]//Advanced Materials Research, 2014 TTP. Switzerland: TTP Press, 2014, 989: 4704-4707.[62] Gong Songjie, Xu Jiongbo. Electronic commerce personalized recommendation model under cloud computing environment[J]. Applied Mechanics and Materials, 2014, 513(2): 639- 642.[63] Franco-Arcega A, Carrasco-Ochoa J A , Sanchez-Diaz G, et al. Building fast decision trees from large training sets[J]. Intelligent Data Analysis, 2012, 16 (4): 649-664.[64] Xue Zhenghua, Shen Geng, Li Jianhui, et al. ComPression-aware I/O performance analysis for big data clustering[C]//1st International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications, 2012 ACM. Beijing, China: ACM Press, 2012: 45-52.[65] Kalyanakrishnan S, Singh D, Kant R. On building decision trees from large-scale data in applications of on-line advertising[C]//23rd ACM International Conference on Information and Knowledge Management (CIKM), 2014 ACM. Shanghai: ACM Press, 2014: 669-678.[66] Yang Hang, Fong Simon. Incrementally optimized decision tree for noisy big data[C]//1st International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications , 2012 ACM. Beijing: ACM Press, 2012: 36-44.[67] Lu E H C, Chen Chinyu, Tseng V S. Personalized trip recommendation with multiple constraints by mining user check-in behaviors[C]//20th International Conference on Advances in Geographic Information Systems, 2012 ACM. California: ACM Press, 2012: 209-218.[68] Lee W J, Oh K J, Lim C G, et al. User profile extraction from Twitter for personalized news recommendation[C]//16th International Conference on Advanced Communication Technology, 2014 IEEE. Korea: IEEE Press, 2014: 779-783.[69] Yi Xing, Hong Liangjie, Zhong Erheng, et al. Beyond clicks: dwell time for personalization[C]//8th ACM Conference on Recommender Systems, 2014 ACM. Silicon Valley: ACM Press, 2014: 113- 120.[70] Vargas S, Castells P. Rank and relevance in novelty and diversity metrics for recommender systems[C]//5th ACM Conference on Recommender Systems, 2011 ACM. Chicago: ACM Press, 2011: 109-116.[71] Mayer-Schönberger V, Cukier K. Big data: arevolution that will transform how we live, work, and think[M]. US: Houghton Mifflin Harcourt, 2013: 1-261.[72] Vargas S, Castells P. Improving sales diversity by recommending users to items[C]//8th ACM Conference on Recommender Systems, 2014 ACM. Silicon Valley: ACM Press, 2014: 145- 152.[73] Garcin F, Faltings B, Donatsch O, et al . Offline and online evaluation of news recommender systems at swissinfo. ch[C]//8th ACM Conference on Recommender Systems, 2014 ACM. Silicon Valley: ACM Press, 2014: 169-176.[74] Becchetti L, Bergamini L, Colesanti U M , et al. A lightweight privacy preserving SMS-based recommendation system for mobile users[J]. Knowledge and Information Systems, 2014, 40(1): 49-77.[75] 霍峥, 孟小峰. 轨迹隐私保护技术研究[J]. 计算机学报, 2011, 34(10): 1820-1830. Huo Zheng, Meng Xiaofeng. A survey of trajectory privacy-preserving techniques[J]. Chinese Journal of Computer, 2011, 34(10): 1820-1830. |
[1] | CHANG Xiao, HUANG Zhibin, YU Min, YANG Wubing. A Deep Decision Tree Model for Aerospace Big Data [J]. Journal of Beijing University of Posts and Telecommunications, 2023, 46(3): 1-6. |
[2] | YAO Jun-liang, XUE Hai-tao, LIU Qing. Daily Water Volume Prediction Algorithm of Urban Smart Water Based on Big Data [J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(4): 82-88. |
[3] | WANG Ya-qing, GUO Cai-li, CHU Yun-fei, ZHOU Hong-hong, FENG Chun-yan. Personalized Hierarchical Recurrent Model for Session-Based Recommendation Systems [J]. JOURNAL OF BEIJING UNIVERSITY OF POSTS AND TELECOM, 2019, 42(6): 142-148. |
[4] | YI Zhi-ling, CUI Chun-feng, HAN Shuang-feng, PAN Cheng-kang, CHEN Ya-mi. Analysis of Key Technologies of 5G-Oriented Cellular Internet of Things [J]. Journal of Beijing University of Posts and Telecommunications, 2018, 41(5): 20-25. |
[5] | ZHANG Si-hai, ZHANG Jian-hua, CHEN Ying, ZHU Jin-kang. Wireless Big Data Enabled Emerging Technologies for Beyond 5G System [J]. JOURNAL OF BEIJING UNIVERSITY OF POSTS AND TELECOM, 2018, 41(5): 52-61. |
[6] | LI Fang-wei, NIE Yi-fang, LIU Fan, ZHU Jiang. The Mechanism of Situation Data Fusion Based on Trust in Wireless Sensor Network [J]. JOURNAL OF BEIJING UNIVERSITY OF POSTS AND TELECOM, 2015, 38(5): 71-76. |
[7] | GAO Zhi-peng, NIU Kun, LIU Jie. Analytics Towards Big Data [J]. JOURNAL OF BEIJING UNIVERSITY OF POSTS AND TELECOM, 2015, 38(3): 1-12. |
[8] |
.
A Survey of Ubiquitous Network
[J]. JOURNAL OF BEIJING UNIVERSITY OF POSTS AND TELECOM, 2010, 33(5): 1-6.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||