[1]Candès E, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate information[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1233.
[2]Candès E, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction form highly incomplete frequency information[J]. IEEE Trans on Information Theory, 2006, 52(2): 489-509.
[3]Donoho D. Compressed sensing[J]. IEEE Trans on Information Theory, 2006, 52(4): 1289-1306.
[4]Kim S, Koh K, Lustig M, et al. A method for large scale l1 regularized least squares problems with applications in signal processing and statistic[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 606-617.
[5]Candès E, Romberg J. l1 MAGIC: Recovery of sparse signal via convex programming[EB/OL]. (2009/06/05) \[2011/03/10]. http:∥www stat. stanford. edu/candes/l1magic/.
[6]Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problem[J]. IEEE Journal of Selected Topics Signal Processing, 2007, 1(4): 586-597. [7]Dai Yuhong, Fletcher R. Projected barzilai borwein methods for large scale box constrained quadratic programming[J]. Numerical Math, 2005, 100(1): 21-47.
[8]Barzilai J, Borwein J. Two point step size gradient methods[J]. IMA Journal of Numerical Analysis, 1988, 8(1): 141-148.
[9]Grippo L, Lampariello F, Lucidi S. A nonmonotone line search technique for Newtons method[J]. SIAM J Numerical Analysis, 1986, 23(4): 707-716.
[10]Dai Yuhong. An adaptive two point stepsize gradient algorithm[J]. Numerical Algorithms, 2001, 27(4): 377-385.
|