[1] 王波涛,吴伟陵,吴善培. 一种改进的神经网络训练算法[J]. 北京邮电大学学报, 2004, 27(4): 89-93. Wang Botao, Wu Weiling, Wu Shanpei. An improved training algorithm for artificial neural networks[J]. Journal of Beijing University of Posts and Telecommunications, 2004, 27(4): 89-93.
[2] 赵春晖,陈万海,郭春燕. 多类支持向量机方法的研究现状与分析[J]. 智能系统学报, 2007, 2(2): 11-17. Zhao Chunhui, Chen Wanhai, Guo Chunyan. Research and analysis of methods for multiclass support vector machines[J]. CAAI Transactions on Intelligent Systems, 2007, 2(2): 11-17.
[3] 王书舟, 伞冶. 支持向量机的训练算法综述[J]. 智能系统学报, 2008, 3(6): 467-475. Wang Shuzhou, San Ye. A survey on training algorithms for support vector machine[J]. CAAI Transactions on Intelligent Systems, 2008, 3(6): 467-475.
[4] Barzilay, Brailovsky V L. On domain knowledge and feature selection using a support vector machine[J]. Pattern Recognition Letters, 1999, 20(5): 475-484.
[5] Hermes L, Buhmann J M. Feature selection for support vector machines//Proceedings of the 15th International Conference on Pattern Recognition. Barcelona, Spain: , 2000: 716-719.
[6] Byvatov E, Schneider G. SVM-based feature selection for characterization of focused compound collections[J]. Journal of Chemical Information and Computer Sciences, 2004, 44(3): 993-999.
[7] 徐俊杰,忻展红. 基于两阶段策略的粒子群优化[J].北京邮电大学学报, 2007, 30(1): 136-139. Xu Junjie, Xin Zhanhong. Particle swarm optimization based on a two-stage strategy[J]. Journal of Beijing University of Posts and Telecommunications, 2007, 30(1): 136-139.
[8] Battiti R. First and second order methods for learning: between steepest descent and Newton's method[J]. Neural Computation, 1992, 4(2): 141-166.
[9] Silvia Casado Yusta. Different metaheuristic strategies to solve the feature selection problem[J]. Pattern Recognition Letters, 2009, 30(5): 525-534.
[10] 孙跃鹏,刘民,吴澄. 面向色织生产过程的整经轴数智能预测算法[J]. 控制工程, 2005, 12(6): 523-526. Sun Yuepeng, Liu Min, Wu Cheng. Intelligent prediction algorithm of trim beam number in colored textile manufacturing process[J]. Control Engineering of China, 2005, 12(6): 523-526. |