Journal of Beijing University of Posts and Telecommunications

  • EI核心期刊

JOURNAL OF BEIJING UNIVERSITY OF POSTS AND TELECOM ›› 2008, Vol. 31 ›› Issue (1): 5-8.doi: 10.13190/jbupt.200801.5.tanym

• Papers • Previous Articles     Next Articles

Chinese Shallow Parsing with Support Vector Machines

TAN Yong-mei, WANG Xiao-jie, Zhou Yan-quan, ZHONG Yi-xin   

  1. School of Information Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2006-11-01 Revised:1900-01-01 Online:2008-02-28 Published:2008-02-28
  • Contact: TAN Yong-mei

Abstract:

To be able to represent the whole hierarchical phrase structure, 10 types of Chinese chunks are defined. A method of Chinese shallow paring based on support vector machines is presented. Conventional recognition techniques based on machine learning have difficulty in selecting useful features as well as finding appropriate combination of selected features. SVMs can automatically focus on useful features and robustly handle a large feature set to develop models that maximize their generalizability. On the other hand, it is well known that SVMs achieve high generalization of very high dimensional feature space. Furthermore, by introducing the kernel principle, SVMs can carry out the training in high-dimensional space with smaller computational cost independent of their dimensionality. The experiments produced promising results.

Key words: support vector machines, shallow parsing, chunk

CLC Number: