[1] Chaum D. Blind signatures for untraceable payments//Advances in Cryptology Crypto ' 82, LNCS. 1982: 199-203. [2] 邱慧敏, 杨义先, 胡正名, 等. 一种基于ElGamal数字签名的双向用户鉴别方案[J]. 北京邮电大学学报, 2005, 28(3): 100-102. Qiu Huimin, Yang Yixian, Hu Zhengming, et al. A two-way user authentication scheme based on elGamal digital signature[J]. Journal of Beijing University of Posts and Telecommunications, 2005, 28(3): 100-102. [3] 钟鸣, 杨义先. 一种基于比特承诺的部分盲签名方案[J]. 通信学报, 2001, 22(9): 1-6. [4] 祁明, 许伯桐. 基于弱盲签名的新型代理签名方案[J]. 计算机工程与设计, 2001, 22(5): 57-61. [5] 祁明, 史国庆. 强盲签名技术的研究与应用[J]. 计算机应用研究, 2001, (3): 134-37. [6] Mambo M, Usuda K, Okamoto E. Proxy signatures for delegating signing operation//Proc 3rd ACM Conference on Computer and Communication Security. 1996: 48-57. [7] Lee B, Kim H, Kim K. Strong proxy signatures and its applications. Proc of SCIS 2001, 2001: 603-608. [8] 谷利泽, 李中献, 杨义先. 不需要可信任方的匿名代理签名方案[J]. 北京邮电大学学报, 2005, 28(1): 48-50. Gu Lize, Li Zhongxian, Yang Yixian. A anonymous proxy signature scheme without a trusted party[J]. Journal of Beijing University of Posts and Telecommunications, 2005, 28(1): 48-50. [9] Tan Z, Liu Z, Tang C. Digital proxy blind signature schemes based on DLP and ECDLP//MM Research Preprints. Beijing: , 2002: 212-217. [10] Lal S, Awasthi A K. Proxy blind signature scheme. 2003. http://eprint.iacr.org/2003/072.pdf. [11] Tan Zuowen, Liu Zhuojun, Tang Chunming. A proxy blind signature scheme based on DLP[J]. Journal of Software, 2003, 14(11): 1931-1935. [2] 杨宇光, 温巧燕, 朱甫臣. 基于纠缠交换的量子身份认证协议[J]. 北京邮电大学学报, 2004, 27(4): 46-49. Yang Yuguang, Wen Qiaoyan, Zhu Fuchen. Quantum authentication protocols based on entanglement swapping[J]. Journal of Beijing University of Posts and Telecommunications, 2004, 27(4): 46-49. [3] 杨宇光, 温巧燕, 朱甫臣. 一种网络多用户量子认证和密钥分配理论方案. 物理学报, 2005, 54(9): 3995-3999. Yang Yuguang, Wen Qiaoyan, Zhu Fuchen. A theoretical scheme for multi-user quantum authentication and key distribution in a network[J]. Acta Phys Sin, 2005, 54(9): 3995-3999. [4] Mark Hillery, Buek Vladimír, Berthiaume André. Quantum secret sharing[J]. Phys Rev A, 1999(59): 1829-1833. [5] Dur W, Vidal G, Cirac J I. Three qubits can be entangled in two inequvalent ways[J]. Phys Rev A, 2000(62): 062314-062318. [6] Thapliyal A V. Multipartite pure-state entanglement[J]. Phys Rev A, 1999, 59: 3336-3342. [7] Eisert J, Briegel H J. Schmidt measure as a tool for quantifying multiparticle entanglement[J]. Phys Rev A, 2001(64): 022306-032112. [8] Cabello A. Bell's theorem with and without inequalities for the three-qubit Greenberger-Horne-Zeilinger and W states[J]. Phys Rev A, 2002(65): 032108-032112. [9] Hardy L. Nonlocality of a single photon revisited[J]. Phys Rev Lett, 1994(73): 2279-2283. [10] Ekert A K. Quantum cryptography based on Bell's theorem[J]. Phys Rev Lett, 1991(67): 661-663. |