[1] Ekert A K. Quantum cryptography based on Bell's theorem[J]. Phys Rev Lett, 1991, 67: 661-663.
[2] Bennett C H. Quantum cryptography using any two nonorthogonal states[J]. Phys Rev Lett, 1992, 68:3121-3124.
[3] Bennett C H,Wiesner S J. Communication via one-and two-particle operators on einstein-podolsky-rosen states[J]. Phys Rev Lett, 1992, 69: 2881-2884.
[4] 郭奋卓, 温巧燕. 量子密钥分发中的验证[J]. 北京邮电大学学报, 2003, 26(增刊): 54-56.
Guo Fenzhuo, Wen Qiaoyan. Authentication in quantum key distribution[J]. Journal of Beijing University of Posts and Telecommunications, 2003, 26(Sup): 54-56.
[5] 杨宇光, 温巧燕, 朱甫臣. 基于纠缠交换的量子身份认证协议[J]. 北京邮电大学学报, 2004, 27(4): 46-49.
Yang Yuguang, Wen Qiaoyan, Zhu Fuchen. Quantum authentication protocols based on entanglement swapping[J]. Journal of Beijing University of Posts and Telecommunications, 2004, 27(4): 46-49.
[6] 杨宇光, 温巧燕, 朱甫臣. 一种网络多用户量子认证和密钥分配理论方案[J]. 物理学报, 2005, 54(9): 3995-3999.
Yang Yuguang, Wen Qiaoyan, Zhu Fuchen. A theoretical scheme for multi-user quantum authentication and key distribution in a network[J]. Acta Phys Sin, 2005, 54(9): 3995-3999.
[7] Durt T, Cerf N J, Gisin N, et al. Security of quantum key distribution with entangled qutrits[J]. Phys Rev A, 2003, 67: 012311-012316.
[8] Bechmann-Pasquinucci H, Tittel W. Quantum cryptography using larger alphabets[J]. Phys Rev A, 2000, 61: 062308-062313.
[9] Hideomi Nihira, Stroud C, Robust R. Multi-partite multi-level quantum protocols[DB/OL].(2004/03/05). http://arxiv.org/pdf/quant-ph/0412097.
[10] Adán Cabello. Addendum to “Quantum key distribution without alternative measurements”[DB/OL].(2004/05/15). http://arxiv.org/pdf/quant-ph/ 0009051. |