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Unanswerable Questions Recognition by Semantic
Discrepancy Detection

LIU Yong-bin', WANG Xiao-jie', YUAN Cai-xia', YI Lian’

(1. School of Telecommunication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;

2. Alibaba (Beijing) Software Services Company Limited, Beijing 100022, China)

Abstract: Machine reading comprehension ( MRC) with unanswerable questions is challenging to the
field of natural language processing research. Unlike previous work which ignores the mechanism of an-
swerable and unanswerable, the semantic conflicts detection-based MRC network ( SCDNet) was pro-
posed aiming at detections of no-answer ( NA) questions through semantic conflicts detection network.
The basic idea is that if the given question is unanswerable, there exists semantic absence or conflicts be-
tween the question and the reference passages. Therefore, SCDNet predicts the NA probability by chec-
king whether the passage covers the integral semantics of the question. Besides, in order to extract the
exact answer from the passage, SCDNet is applied an answer length penalty in the loss function, which
helps the learning objective to be more consistent with the evaluation metrics. SCDNet packs the NA
question predictor and the answer extractor in a joint model and is trained in an end-to-end manner. Ex-
periments show that SCDNet performs better than some strong baseline models, and achieve an F1 score
of 72.43 and 76.96 NA accuracy on SQuAD 2. 0 dataset.
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Machine reading comprehension ( MRC) is a kind
of question answering system based on the facts in the
reference text. It has received considerable attention
over the past few years. With the benefit of the first
high-quality and large MRC dataset SQuAD 1.1
MRC models with deep learning architectures are pro-
posed and have achieved promising results on a variety
of tasks. However, most of them are trained to choose
the most probable answer by comparing the candidate
answers under the hypothesis that the given text always
has the correct answer in its context. However, this
hypothesis cannot be guaranteed in real world, some
questions might be unanswerable only by its reference
text. SQuAD 2.0"*' released recently offers a no-an-
swer (NA) option to each question. Table 1 gives an
example in SQuAD 2. 0 which cannot be answered from
the given reference text. The unanswerable questions
in SQuAD 2. 0 are written specially to be similar to an-
swerable ones, all of the questions’ contents are rele-
vant to the passage and each of the unanswerable ques-
tions is provided a plausible answer which is not real.
So, there are no obvious differences between answera-
ble questions and unanswerable questions, and they

must be distinguished by deep semantic matching.

Table 1 Examples of SQuAD 2.0

No. Examples

Passage: The first fullscale working railway steam locomotive was
built by Richard Trevithick in the United Kingdom and, on 21
February 1804, the world’s first railway journey took place as
Trevithick’s unnamed steam locomotive hauled a train along the
tramway from the Pen-y-darren ironworks, near Tydfil to Abercynon

in south Wales.

Question: Where did the world’s first railway journey terminate ?

Ground truth answer Abercynon

Passage: Tobacco smoking (including secondhand smoke) and
short-term exposure to air pollution such as carbon monoxide,
nitrogen dioxide, and sulfur dioxide (but not ozone) have been

associated with ML

Question: What forms of air pollution does smoking tobacco cause?

Ground truth answer: <No Answer>

Plausible answer: carbon monoxide, nitrogen dioxide, and sulfur

dioxide

To deal with the NA problem, most current mod-
els append a special symbol to the passage to represent
NA, models are trained to point to this special symbol
when there comes an unanswerable question. Addition-
ally, UNet"*! proposed a universal node for classifing
the NA problems, SAN 2. 0'*) used a binary NA classi-
fier to be a joint training target, Read + verify'>' ap-
plied a binary generative pre-training ( GPT) verifier to
check the entailment relation between the question and
the predicted answer sentence. Although they got great
success in improving the NA prediction, they all ignore
the mechanism of NA.

An NA question is difficult to recognize because
there is no special syntactic or semantic NA-feature, it
only depends on the question-passage semantic rela-
tion, and can only be distinguished from their semantic
matching results. From this point of view, the NA
problem is similar to the natural language inference
(NLI) task'®”) except that the NLI task focuses on the
relationship between two sentences while MRC task
cares more about a question and a passage. A question
would be unanswerable if the given passage doesn’ t
have enough information to support the facts the ques-
tion asked, or if the semantics conveyed by the passage
conflicts with the facts asked by the question, while
when a question is answerable by a passage, every se-
mantic component of the question can be found in the
passage. Table 1 demonstrates two examples to explain
our claim. Example 1 shows that the highlighted se-
mantic components of the question all exist in the pas-
sage, they locate concentrated in the question but scat-
tered in the passage. Example 2 shows that the coun-
terpart of the question word “cause” or the question
phrase “smoking tobacco cause” doesn’t exist in the
passage. Inspired by this semantic location pattern and
the works from NLI, it is proposed that the NA problem
can be formulated as a semantic matching task that de-
tects semantic conflicts and absence between question
and passage.

To recognize an answerable question, every se-
mantic constituents of thequestion needs to find its

counterpart in the passage to ensure the passage mat-
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ches all the semantic components from the question,
and the semantic integrity checking is more reasonable
to be modeled from the question side. In SCDNet, the
question’ s semantic matching counterpart is collected
from the passage by query-to-passage attention, the at-
tention averaged passage vectors are concatenated after
the query vectors forming the passage-aware question,
and then fed into a BiLSTM layer for the absence and
conflicts detection.

Furthermore, the answer prediction subtask is
jointly trained with the NA classifier, the answer pre-
diction network utilizes an iterative pointer network to
predict the answer’ s boundary. An answer boundary
penalty is used in the loss function to constraint the
start-end pair in a reasonable relative position. The
penalty is a function of the distance of the highest con-
fident start-end pair, it improves the model’ s F1 per-
formance for about 1 percent.

Our contributions can be summarized as follows

« SCDNet, a novel neural model is proposed
which predicts the unanswerable questions and extracts
answers for answerable questions, while the two proce-
dures are packed together into a joint model and are
trained jointly.

- SCDNet uses a simple Bi-directional long short
term memory ( BILSTM) + maxout network to predict
whether there is semantic gaps or semantic conflicts be-
tween the passage and the fact that question is con-
cerned about, and improves the original pointer net-
work to make it predict the answer span with a suitable
length.

- Through extensive experiments on benchmark
datasets , it is demonstrated that SCDNet’ s effectiveness
over the competitive state-of-the-art approaches by 1.6

percent in NA classification accuracy.

1 Related work

Machine reading comprehension, a challenge to
enable machines to answer questions after reading giv-
en textual evidence, has attracted considerable atten-
tion from both academic and industrial communities.

SQuAD 1.1 was released as the first large-scale

dataset created by humans through crowdsourcing, and
it constrains the answer to be a fragment of the given
passage, while SQuAD 2.0'?' contains a collection of
questions that might be unanswerable. MRC models
must not only extract an answer but also determine if
the question is unanswerable and refrain from answer-
ing an unanswerable question.

A typical MRC framework is shared among the
previous models. First, it encodes the questions and
passages, then refines passage representation to get a
more elaborated question-aware passage from a matc-
hing network, finally predicts the answer span and out-
put the final answer. Most of the methods focused on
how to improve question-aware passage representation,
question-passage fusion process, and the attention
mechanism.

As the answer defined in SQuAD is a continuous
span of the passage, the broadly used strategy for ex-
tract answer is to predict the probability of each pas-
sage position being the start or end of an answer span.
Most current models predict the probability directly
from the question-aware passage word features with a
fully connected layer and a softmax function. Pointer
network'® is usually used to predict the start and end
positions sequentially, which makes the end prediction
step depend on the previous start prediction. Rein-

9 .
(9] y stochastic answer

forced mnemonic reader (RMR)
network (SAN) " used iterative output layer to refine
their answer by multi-step reasoning.

The predicted start and end points of the candi-
date answer must obey a position constraint; the start
always goes before the end, and the answer length is
usually not too lengthy. So, the models usually use an
extra span probability rectification step following the
network ’ s output to lower or zero the illegal start-end

St Despite their success, the

probabilities such as in
models don’ t include the answer length limitation in
the training process, and the answer being evaluated
maybe not the one from the start-end pair with the
highest confidence.

Since SQuAD 2.0 was released, several models

try to solve the NA problem by adding an extra choice
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BiDAF-no-answer
(BNA) "™ adds a trainable bias as the no-answer rep-
p

to their original SQuAD model.

resentation to compete for the answer boundary with
passage words. RMR + Verify">' adds two independent
loss items to its loss function and use a GPT formed
verifier to predict the NA probability. SAN 2.0 treats
the end-of-sentence ( EOS) padding of the passage as
a representative position for NA, and build a binary
NA classifier additionally to train the model in a joint
way. U-Net'*' finds that a universal node vector enco-
ded between the question and passage to be a powerful
information collector for NA detection. However, these
works totally rely on the question-aware passage to pre-

dict NA, and ignore to reveal the mechanic that why a

question is unanswrable, therefore are hard to explain.

2 Model

An MRC problem can be typically represented by
a 3-tuples (Q,C,A). The Q =q,,q,,

question with m words. C =c¢,,c,, -+ ,c, is the passage

,q, 1s the
with n words. A =a,,a, when the answer exists, A =
NA when the question can’t be answered according to
the given passage, where a, and a, are the start and the
end boundaries of the answer span respectively.

SCDNet is composed of three main blocks, they
are Encoding, Interaction, and Prediction, as shown
in Fig. 1. The encoding part encodes questions and ref-
erence text respectively, the interaction part fuses the
information by attention mechanism to extract question-
aware passage features and passage-aware question fea-
tures. Based on the question-aware passage features,
the answer prediction network predicts the answer
boundary probability. Based on the passage-aware
question features, the NA prediction network predicts
the NA probability. The details of each part are given
in the following subsections.
2.1 Encoding

The Encoding layer is used to transform the input
word sequence into its contextual embedding. The
words are first mapped into fixed word embeddings with

pre-trained GloVe'"”' and CoVe'"”'. The embedding

extraction method from document reader question an-

No Answer
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Fig.1  Architecture of the SCDNET

swering (DRQA) is applied, part of speech (POS),
named entity recognition ( NER) and lemma embed-
ding features are appended after the pre-trained word
vector. Let Q, = R"* be the question vectors and C,
=R"*’ be the passage vectors. Two 1D convolutional
neural networks (CNNs) is deployed after the embed-
ding layer to extract the uni-gram and bi-gram features
of the word sequences, a maxout layer is used on the
uni-gram and bi-gram vectors to reduce dimension as
shown in Eq (1) and (2). The bi-gram matrix is pad-
ded using its last word to make it the same length as

the uni-gram sequence.
C, ,, =maxout(conv,,(Cy) ,conv,, (Cy)) (1)
Q. ,, =maxout(conv,;(Qy) ,conv,, (Q.)) (2)
A BiLSTM layer is then used to encode the con-

textual information as shown in Eq (3)
Q. =BiLSTM(Q., ,,) (3)

2.2 Interaction

The Interaction part is composed of two layers, a
fusion layer and a self-attention layer. The fusion layer
1s to extract question-aware passage representations,
the attention mechanism is applied to fulfill the fusion
process. Let X e R"** Y e R"** be the input vectors,

e R, W, e R"* be trainable weights matrices,
De R“k be a diagonal matrix, [ ;] indicates the ma-
trix/vector concatenation operator. The attention aver-

aged question vectors are calculated based on the simi-
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larity matrix and concatenated to their corresponding
passage word as shown in Eq (4) — (7), where S,
R™*",S. € R"™" are two similarity matrices calculated
respectively, the similarity score function from Fusion-
Net'"*) is applied.

S(X,Y) =softmax(W,XD(W,Y)") e R**" (4)

Sei =S(LQcives Qeoves Qe ][ Coives Coves € )
(5)

Ser =S(LQqive s Qeove 3 Qe ) s [ Coive s Ceves € 1)
(6)
Qc=[8:0..:5:0.] (7)
At last, a BiLSTM is used to encode the contextu-

al information as shown in Eq(8).

Cruion = BILSTM([ C_,,50. 1) (8)

fusion

The self-attention layer is used to capture the
long-distance dependencies in the passage. The simi-
larity matrix S_; is calculated as in Eq (10), the cor-
responding passage vector for every passage word is

calculated as in Eq (11).

CH = [ Corove s CC(JVe 5 Ceim 5 Ci‘usiun :I 9)
Sselr =S(C”,C”) (10)
CsP]f = S;I‘e]fCeJn ( 1 1 )

At last, a BiLSTM is used to encode the contextu-
al information as shown in Eq (12). This layer output
the final passage features H for predicting the answer
boundary.

H¢ =BilLSTM([ C0 3 Coe 1) (12)
2.3 Prediction
2.3.1

Our model use an attention layer to collect the

No answer classification

question’ s most relevant information from the two pas-
and H., and a BiLSTM to check
whether there is a noteworthy semantic absence or a
conflict as shown in Eq (13) and (14).
S =8(0.,Crpion) S =5(Q, ,H) e R"™
(13)
H, =BiLSTM([ Q5S¢ Crion;SquHc 1) e R™"0
(14)
A maxout layer is deployed after the BiLSTM to

sage layers C

fusion

aggregate the checking results throughout the question
sequence into a h, dimensional vector. And based on
this vector, a binary classifier is built to predict the
question” s NA probability, Wy, € R" is a trainable
weight vector, by, is a trainable bias value as shown in
Eq (15).
Paa =sigmoid (Wy,max, (Hy) +by,)  (15)
The predicted answer would be set to NA if its NA
probability exceeds a threshold. Experiments show that
it brings 2. 3 percent improvement than predicting from
the EOS vector of the passage.
2.3.2 Answer prediction
An iterative pointer network is used as our answer
network. The memory is the output feature of the pas-
sage H, the initial hidden vector h_,, is a self-attention
averaged question vector, as shown in Eq (16).
h,, = softmax( W,Q, +b,) Q. (16)
A gated recurrent unit ( GRU) formed pointer net-
work is used to refresh the hidden vector as shown in
Eq (18), h,,,h,, are hidden vectors of the GRU. The
start and end are predicted through a bilinear function
as in Eq (17) and (19).
p,(s) =softmax(h_,WH;) e R" (17)
b, =GRUCh,,,p,(s)H) , b,y =h,, (18)
p,(e) =softmax(h, W .H;) e R" (19)
W, W

e

WQ ’ bQ s
p.(s),p,(e) are the probabilities of the start and end

are all trainable weight matrices,

at time step ¢. The final prediction is the output at time
step T, here T is a hyperparameter.
The model is jointly trained, and the total loss is

expressed as in Eq (20). loss, . is the loss item for the

ans

answer span prediction task, lossy, is for the NA pre-

diction task, loss_, is the penalty item to penalize the

span
highest confidence answer’ s out-of-range length.

(20)

The cross-entropy loss function for both loss, and

loss =loss,,, + lossy, + loss

ans span

lossy, can be written as Eq (21) ~ (23) which only

consider a single training example.

loss,,, = —logp,(s) —logp,(e) (21)
lossy, = —logpy, (22)
log (e-s-T+1), e-s>L
loss,,, =1log (s—e+1), s-e>0 (23)
0, other

b
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3 Experiments

3.1 Dataset

SQuAD 2.0 has 86 821 answerable questions and
43 498 unanswerable questions in its training data,
5928 answerable questions and 5 945 unanswerable
questions in its development data. Two metrics are
used to evaluate the model performance; exact match
(EM) and a marcro-averaged F1 score which measures
the weighted average of the precision and recall rate at
character level.

3.2 Implementation details

The spacy tool is utilized to tokenize all the both
the question and the passage, and generate lemma,
part-of-speech and named entity tags. PyTorch is used
to implement our models.

The model uses word embedding with 300-dimen-
sional GloVe and 600-dimensional CoVe word vec-
tors, and only finetunes a 1 000 most frequent word
embedding weights during training. The embeddings
for the out-of-vocabulary are set to 0. All the hidden
sizes of BiLSTM in the interaction layer and prediction
layer are set to 300. Weight normalization is used.
The dropout rate is 0. 1, the mini-batch size is set to
16. Adamax optimizer is used and its learning rate is
initialized to 0. 001 and decrease it by 0.5 after each
10 epochs. The threshold of the NA classifier is set to
0.5. The threshold of the answer length threshold L is
10. The prediction iterative step 7T is also set to 10.
The best results are reached after 13 training epochs.

In this model lots of codes and ideas are borrowed
from SAN 2. 0.

3.3 Results and analysis

SCDNet is evaluated on the development dataset
of SQuAD 2.0, and it achieves a F1 score of 72.43
with GloVe and CoVe embeddings. Our model can
achieve a NA accuracy of 76.96 which proves that
SCDNet is good at NA prediction. This is 1. 6 percent
higher than our compared model SAN 2. 0" | which is
also tested on the development dataset with the classifi-
er threshold set to 0. 5.

SAN 2. 0 has a simple but effective MRC network

Table 2 Experiment results

All NoAns
Configuration

EM F1 ACC
BNA[? 59.8 62.6 -
DocQA?! 65.1 67.6 -
RMR + Verify'® 70.58 74.8 -

U-Net ! 70.3 74.0 80.2

SAN 2. 004 69.27 72.66 75.3

SCDNet (with CoVe) 69.19 72.44 76.96

structure, its network structure is easy to understand
and suitable for testing the differences between the two
ways of NA prediction, from the question-side or the
passage-side. Based on the frame of SAN 2.0, SCD-
Net model is built and shows the effectiveness of pre-
dicting NA probability by detecting the semantic dis-
crepancy between the question and the passage.

Comparing with SAN 2.0, SCDNet simplifies the
3-layer encoding BiLSTM in SAN 2.0 into 1-layer
BiLSTM. SCDNet adds a bi-gram convolution layer to
its encoding network, because it can help SCDNet to
be more sensitive of the order of words in the texts.

U-Net and RMR + Verify in Table 2 all get very
strong performances. But they are more complicated in
structure than SAN 2. 0 and they all use ELMo which is
a more advanced pre-trained word embedding model
than CoVe.
3.4 Ablation study

To illustrate the effectiveness of the NA classifier
and answer length penalty, ablation studies are shown
in Table 3. Here are five models trained on the devel-
opment set; 1) SCDNet is our proposed model;
2) -length penalty model is SCDNet without length
penalty; 3) -length rectification is SCDNet without the
rectification on the candidate answer-span probabili-
ties; 4) -length penalty and length rectification is an
SCDNet without both the length penalty in the loss
function and the probability rectification before evalua-
tion; 5) EOS NA means to remove the question-side
NA prediction part, and use the NA prediction from
the appended EOS vector of the passage feature H_ in-

stead. 6) one Q2C means to remove the second last fu-



132 Bl AT PN a2k
sion attention Q2C layer. 15 although 15 is commonly used as the answer length
Table 3 Ablation experiments limitation by other researchers. In addition, the an-
HasAns All NoAns swer-span probability rectification step is indispensable
Configuration . . .

EM - EM Fl ACC for our model as is shown in 3), this means that al-
1) SCDNet 64.04 70.54 69.19 72.44 76.96 though our network improves its performance by add
2) -length penalty 68.21 71.46 68.21 71.47 76.13 the answer length penalty, it still can benefit from
3) -length rectification  60.46  65.89 63.09 67.03 76.59 using an extra step of probability rectification. The rec-

4) -length penalty and e . . .
58.69 63.38 62.69 66.52 75.91 tification method from SAN 2. 0 codes is applied to re-

length rectification

5) EOS NA 65.20 69.08 68.46 71.89 74.69 duce the answers’ probability by multiplying a punish
6) one Q2C 63.87 70.22 68.33 71.99 76.35 factor for those answers which have more

By adding the answer-length penalty, it gives a
0. 93 percent performance boost compared to 2), the

best performance is got at the threshold 10 instead of

1
log(L,,, +1)
than 5 word, [,

By comparing with 5),

. stonds for the answer length.
the SCDNet get a 0. 55

percent promotion in F1 and 2.3 percent promotion in

counties of Los Angeles,

In 1900, the Los Angeles Times defined southern California as including “the seven
San Bernardino, Orange, Riverside, San Diego. Ventura and
Santa Barbara.”In 1999, the Times added a newer county—Imperial—to that list.
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NA accuracy which proves the effectiveness of our
question-side based conflicts detection model. Moreo-
ver, our NA prediction network can also improve the
network ’ s performance just as a jointly trained task for
the EOS based NA prediction model.

The two Q2C fusion attention layers in our model
are used to collect two different levels of passage infor-
mation, 6) in Table 3 shows that if we only use the
last passage information collection layer, the F1 score
will drop about 0. 45.

3.5 Case study

To illustrate the effectiveness of our NA predic-
tion , the visualization of BiLSTM output H,, and maxout
output max, (H,) from Eq (13) are shown in Fig. 2.
The BiLSTM is used as NA semantic matching network
and the maxout is applied after it to detect the exist-
ence of semantic absence or conflict. The 256-dim H,,
are sorted according to the weights of the NA classifier
Wy because the elements multiplied with bigger
weights have more powerful impacts on the predicting
results. The NA classifier weights are sorted in a de-
scending order as shown in Fig 2 (b). Here, 3 differ-
ent question-answer cases for the same passage are giv-
enin Fig 2. Fig 2 (a) is the passage. Fig 2 (¢)
shows an answerable question. Fig2 (d) shows an un-
answerable case because of a semantic conflict, “Cali-
fornia Times” is conflicted with “Los Angeles Times”
in the passage. Fig2 (e) is an unanswerable case for
semantic absence of the word “absent” , the word “ab-
sent” gets high values at the top 100 dimensions which
can be regarded as a sign of semantic discrepancy, this
discrepancy is caught by the maxout operation and be

recognized by the NA classifier.

4 Conclusion

SCDNet, a simple yet effective network for ma-
chine reading comprehension with unanswerable ques-
tions is proposed. It incorporates a BiLSTM + maxout
made semantic matching mechanism to check the se-
mantic absence and conflicts through the question

words, and get a 1.6 percent improvement in no-an-

swer accuracy compared to our baseline model SAN
2.0. Additionally, it is very useful to add an answer-
length penalty in the answer span prediction loss func-

tion, which brings about 1% improvement in F1 score.
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