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通过检测语义分歧识别无答案问题
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摘要: 机器阅读理解中存在无法仅从给定文档中获取问题答案的特殊情况,为此,基于语义冲突检测的机器阅读理

解网络(SCDNet)提出应通过检测问题与文档内容之间的语义分歧来识别这种情况. 经分析发现,文档无法为问题

提供答案的根本原因主要分为两类:一是文档中不包含问题所需的语义信息; 二是二者包含的语义成分之间存在

分歧. 据此推断,可以通过检测文档语义信息是否全面涵盖问题所需的信息来识别问题是否可由文档信息给出回

答. 此外,通过在损失函数中加入答案文本长度惩罚项,网络优化目标函数更接近评测指标,系统性能得到提升.
网络模型使用联合训练模型建模无答案的问题识别与答案抽取 2 个子任务,并使用端到端的方式训练. 实验结果

证明,其对无答案问题类别预测的正确率超过了性能先进的基线模型 SAN2郾 0,在 SQuAD2郾 0 数据集上取得了

72郾 43 的 F1 值和 76郾 96 的无答案问题识别正确率.
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Abstract: Machine reading comprehension (MRC) with unanswerable questions is challenging to the
field of natural language processing research. Unlike previous work which ignores the mechanism of an鄄
swerable and unanswerable, the semantic conflicts detection鄄based MRC network ( SCDNet) was pro鄄
posed aiming at detections of no鄄answer (NA) questions through semantic conflicts detection network.
The basic idea is that if the given question is unanswerable, there exists semantic absence or conflicts be鄄
tween the question and the reference passages. Therefore, SCDNet predicts the NA probability by chec鄄
king whether the passage covers the integral semantics of the question. Besides, in order to extract the
exact answer from the passage, SCDNet is applied an answer length penalty in the loss function, which
helps the learning objective to be more consistent with the evaluation metrics. SCDNet packs the NA
question predictor and the answer extractor in a joint model and is trained in an end鄄to鄄end manner. Ex鄄
periments show that SCDNet performs better than some strong baseline models, and achieve an F1 score
of 72郾 43 and 76郾 96 NA accuracy on SQuAD 2郾 0 dataset.
Key words: machine reading comprehension; question answering; unanswerable question



摇 摇 Machine reading comprehension (MRC) is a kind
of question answering system based on the facts in the
reference text. It has received considerable attention
over the past few years. With the benefit of the first
high鄄quality and large MRC dataset SQuAD 1郾 1[1],
MRC models with deep learning architectures are pro鄄
posed and have achieved promising results on a variety
of tasks. However, most of them are trained to choose
the most probable answer by comparing the candidate
answers under the hypothesis that the given text always
has the correct answer in its context. However, this
hypothesis cannot be guaranteed in real world, some
questions might be unanswerable only by its reference
text. SQuAD 2郾 0[2] released recently offers a no鄄an鄄
swer (NA) option to each question. Table 1 gives an
example in SQuAD 2郾 0 which cannot be answered from
the given reference text. The unanswerable questions
in SQuAD 2郾 0 are written specially to be similar to an鄄
swerable ones, all of the questions爷 contents are rele鄄
vant to the passage and each of the unanswerable ques鄄
tions is provided a plausible answer which is not real.
So, there are no obvious differences between answera鄄
ble questions and unanswerable questions, and they
must be distinguished by deep semantic matching.

Table 1摇 Examples of SQuAD 2. 0

To deal with the NA problem, most current mod鄄
els append a special symbol to the passage to represent
NA, models are trained to point to this special symbol
when there comes an unanswerable question. Addition鄄
ally, UNet[3] proposed a universal node for classifing
the NA problems, SAN 2郾 0[4] used a binary NA classi鄄
fier to be a joint training target, Read + verify[5] ap鄄
plied a binary generative pre鄄training (GPT) verifier to
check the entailment relation between the question and
the predicted answer sentence. Although they got great
success in improving the NA prediction, they all ignore
the mechanism of NA.

An NA question is difficult to recognize because
there is no special syntactic or semantic NA鄄feature, it
only depends on the question鄄passage semantic rela鄄
tion, and can only be distinguished from their semantic
matching results. From this point of view, the NA
problem is similar to the natural language inference
(NLI) task[6鄄7] except that the NLI task focuses on the
relationship between two sentences while MRC task
cares more about a question and a passage. A question
would be unanswerable if the given passage doesn爷 t
have enough information to support the facts the ques鄄
tion asked, or if the semantics conveyed by the passage
conflicts with the facts asked by the question, while
when a question is answerable by a passage, every se鄄
mantic component of the question can be found in the
passage. Table 1 demonstrates two examples to explain
our claim. Example 1 shows that the highlighted se鄄
mantic components of the question all exist in the pas鄄
sage, they locate concentrated in the question but scat鄄
tered in the passage. Example 2 shows that the coun鄄
terpart of the question word “ cause冶 or the question
phrase “smoking tobacco cause冶 doesn爷 t exist in the
passage. Inspired by this semantic location pattern and
the works from NLI, it is proposed that the NA problem
can be formulated as a semantic matching task that de鄄
tects semantic conflicts and absence between question
and passage.

To recognize an answerable question, every se鄄
mantic constituents of thequestion needs to find its
counterpart in the passage to ensure the passage mat鄄
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ches all the semantic components from the question,
and the semantic integrity checking is more reasonable
to be modeled from the question side. In SCDNet, the
question爷 s semantic matching counterpart is collected
from the passage by query鄄to鄄passage attention, the at鄄
tention averaged passage vectors are concatenated after
the query vectors forming the passage鄄aware question,
and then fed into a BiLSTM layer for the absence and
conflicts detection.

Furthermore, the answer prediction subtask is
jointly trained with the NA classifier, the answer pre鄄
diction network utilizes an iterative pointer network to
predict the answer爷 s boundary. An answer boundary
penalty is used in the loss function to constraint the
start鄄end pair in a reasonable relative position. The
penalty is a function of the distance of the highest con鄄
fident start鄄end pair, it improves the model爷 s F1 per鄄
formance for about 1 percent.

Our contributions can be summarized as follows:
· SCDNet, a novel neural model is proposed

which predicts the unanswerable questions and extracts
answers for answerable questions, while the two proce鄄
dures are packed together into a joint model and are
trained jointly.

·SCDNet uses a simple Bi鄄directional long short
term memory (BiLSTM) + maxout network to predict
whether there is semantic gaps or semantic conflicts be鄄
tween the passage and the fact that question is con鄄
cerned about, and improves the original pointer net鄄
work to make it predict the answer span with a suitable
length.

· Through extensive experiments on benchmark
datasets,it is demonstrated that SCDNet爷s effectiveness
over the competitive state鄄of鄄the鄄art approaches by 1. 6
percent in NA classification accuracy.

1摇 Related work
Machine reading comprehension, a challenge to

enable machines to answer questions after reading giv鄄
en textual evidence, has attracted considerable atten鄄
tion from both academic and industrial communities.
SQuAD 1郾 1[1] was released as the first large鄄scale

dataset created by humans through crowdsourcing, and
it constrains the answer to be a fragment of the given
passage, while SQuAD 2郾 0[2] contains a collection of
questions that might be unanswerable. MRC models
must not only extract an answer but also determine if
the question is unanswerable and refrain from answer鄄
ing an unanswerable question.

A typical MRC framework is shared among the
previous models. First, it encodes the questions and
passages, then refines passage representation to get a
more elaborated question鄄aware passage from a matc鄄
hing network, finally predicts the answer span and out鄄
put the final answer. Most of the methods focused on
how to improve question鄄aware passage representation,
question鄄passage fusion process, and the attention
mechanism.

As the answer defined in SQuAD is a continuous
span of the passage, the broadly used strategy for ex鄄
tract answer is to predict the probability of each pas鄄
sage position being the start or end of an answer span.
Most current models predict the probability directly
from the question鄄aware passage word features with a
fully connected layer and a softmax function. Pointer
network[8] is usually used to predict the start and end
positions sequentially, which makes the end prediction
step depend on the previous start prediction. Rein鄄
forced mnemonic reader (RMR) [9], stochastic answer
network (SAN) [10] used iterative output layer to refine
their answer by multi鄄step reasoning.

The predicted start and end points of the candi鄄
date answer must obey a position constraint: the start
always goes before the end, and the answer length is
usually not too lengthy. So, the models usually use an
extra span probability rectification step following the
network爷s output to lower or zero the illegal start鄄end
probabilities such as in[3鄄4] . Despite their success, the
models don爷 t include the answer length limitation in
the training process, and the answer being evaluated
maybe not the one from the start鄄end pair with the
highest confidence.

Since SQuAD 2郾 0 was released, several models
try to solve the NA problem by adding an extra choice
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to their original SQuAD model. BiDAF鄄no鄄answer
(BNA) [11] adds a trainable bias as the no鄄answer rep鄄
resentation to compete for the answer boundary with
passage words. RMR + Verify[5] adds two independent
loss items to its loss function and use a GPT formed
verifier to predict the NA probability. SAN 2. 0 treats
the end鄄of鄄sentence (EOS) padding of the passage as
a representative position for NA, and build a binary
NA classifier additionally to train the model in a joint
way. U鄄Net[3] finds that a universal node vector enco鄄
ded between the question and passage to be a powerful
information collector for NA detection. However, these
works totally rely on the question鄄aware passage to pre鄄
dict NA, and ignore to reveal the mechanic that why a
question is unanswrable, therefore are hard to explain.

2摇 Model
An MRC problem can be typically represented by

a 3鄄tuples (Q,C,A). The Q = q1,q2,…,qm is the
question with m words. C = c1,c2,…,cn is the passage
with n words. A = as,ae when the answer exists, A =
NA when the question can爷 t be answered according to
the given passage, where as and ae are the start and the
end boundaries of the answer span respectively.

SCDNet is composed of three main blocks, they
are Encoding, Interaction, and Prediction, as shown
in Fig. 1. The encoding part encodes questions and ref鄄
erence text respectively, the interaction part fuses the
information by attention mechanism to extract question鄄
aware passage features and passage鄄aware question fea鄄
tures. Based on the question鄄aware passage features,
the answer prediction network predicts the answer
boundary probability. Based on the passage鄄aware
question features, the NA prediction network predicts
the NA probability. The details of each part are given
in the following subsections.
2郾 1摇 Encoding

The Encoding layer is used to transform the input
word sequence into its contextual embedding. The
words are first mapped into fixed word embeddings with
pre鄄trained GloVe[12] and CoVe[13] . The embedding
extraction method from document reader question an鄄

Fig. 1摇 Architecture of the SCDNET

swering (DRQA) is applied, part of speech (POS),
named entity recognition (NER) and lemma embed鄄
ding features are appended after the pre鄄trained word
vector. Let QE = RRm 伊 d be the question vectors and CE

= RRn 伊 d be the passage vectors. Two 1D convolutional
neural networks (CNNs) is deployed after the embed鄄
ding layer to extract the uni鄄gram and bi鄄gram features
of the word sequences, a maxout layer is used on the
uni鄄gram and bi鄄gram vectors to reduce dimension as
shown in Eq (1) and (2). The bi鄄gram matrix is pad鄄
ded using its last word to make it the same length as
the uni鄄gram sequence.

Ce_m = maxout(convuni(CE),convbi(CE)) (1)
Qe_m = maxout(convuni(QE),convbi(QE)) (2)

A BiLSTM layer is then used to encode the con鄄
textual information as shown in Eq (3).

Qe = BiLSTM(Qe_m) (3)
2郾 2摇 Interaction

The Interaction part is composed of two layers, a
fusion layer and a self鄄attention layer. The fusion layer
is to extract question鄄aware passage representations,
the attention mechanism is applied to fulfill the fusion
process. Let X沂RRlx 伊 dx,Y沂RRly 伊 dy be the input vectors,
W1沂RRk 伊 dx,W2 沂RRk 伊 dy be trainable weights matrices,
D沂RRk 伊 k be a diagonal matrix, [;] indicates the ma鄄
trix / vector concatenation operator. The attention aver鄄
aged question vectors are calculated based on the simi鄄
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larity matrix and concatenated to their corresponding
passage word as shown in Eq (4) - (7), where SC1沂
RRm 伊 n,SC2沂RRm 伊 n are two similarity matrices calculated
respectively, the similarity score function from Fusion鄄
Net[14] is applied.

S(X,Y) = softmax(W1XD(W2Y) T)沂RRlx 伊 ly (4)

SC1 = S([QGloVe;QCoVe;Qe_m],[CGloVe;CCoVe;Ce_m])
(5)

SC2 = S([QGloVe;QCoVe;Qe_m],[CGloVe;CCoVe;Ce_m])
(6)

QC = [ST
C1Qe_m;ST

C2Qe] (7)

At last, a BiLSTM is used to encode the contextu鄄
al information as shown in Eq(8).

C fusion = BiLSTM([Ce_m;QC]) (8)

The self鄄attention layer is used to capture the
long鄄distance dependencies in the passage. The simi鄄
larity matrix Sself is calculated as in Eq (10), the cor鄄
responding passage vector for every passage word is
calculated as in Eq (11).

CH = [CGloVe;CCoVe;Ce_m;C fusion] (9)

Sself = S(CH,CH) (10)

Cself = ST
selfCe_m (11)

At last, a BiLSTM is used to encode the contextu鄄
al information as shown in Eq (12). This layer output
the final passage features HC for predicting the answer
boundary.

HC = BiLSTM([C fusion;Cself]) (12)
2郾 3摇 Prediction
2郾 3郾 1摇 No answer classification

Our model use an attention layer to collect the
question爷s most relevant information from the two pas鄄
sage layers C fusion and HC, and a BiLSTM to check
whether there is a noteworthy semantic absence or a
conflict as shown in Eq (13) and (14).

SQ1 = S(Qe,C fusion),SQ2 = S(Qe,HC)沂RRm 伊 n

(13)
HQ = BiLSTM([Qe;SQ1C fusion;SQ2HC])沂RRm 伊 hQ

(14)
A maxout layer is deployed after the BiLSTM to

aggregate the checking results throughout the question
sequence into a hQ dimensional vector. And based on
this vector, a binary classifier is built to predict the
question爷 s NA probability, WNA 沂RRhQ is a trainable
weight vector, bNA is a trainable bias value as shown in
Eq (15).

pNA = sigmoid(WNAmaxm(HQ) + bNA) (15)
The predicted answer would be set to NA if its NA

probability exceeds a threshold. Experiments show that
it brings 2郾 3 percent improvement than predicting from
the EOS vector of the passage.
2郾 3郾 2摇 Answer prediction

An iterative pointer network is used as our answer
network. The memory is the output feature of the pas鄄
sage HC, the initial hidden vector hs,0 is a self鄄attention
averaged question vector, as shown in Eq (16).

hs0 = softmax(WQQe + bQ)Qe (16)
A gated recurrent unit (GRU) formed pointer net鄄

work is used to refresh the hidden vector as shown in
Eq (18), hs,t,he,t are hidden vectors of the GRU. The
start and end are predicted through a bilinear function
as in Eq (17) and (19).

pt( s) = softmax(hs,tWsHC)沂RRn (17)
he,t = GRU(hs,t,pt( s)HC), hs,t + 1 = he,t (18)

pt(e) = softmax(he,tWeHC)沂RRn (19)
WQ,bQ,Ws,We, are all trainable weight matrices,

pt( s),pt( e) are the probabilities of the start and end
at time step t. The final prediction is the output at time
step T, here T is a hyperparameter.

The model is jointly trained, and the total loss is
expressed as in Eq (20). lossans is the loss item for the
answer span prediction task, lossNA is for the NA pre鄄
diction task, lossspan is the penalty item to penalize the
highest confidence answer爷s out鄄of鄄range length.

loss = lossans + lossNA + lossspan (20)
The cross鄄entropy loss function for both lossans and

lossNA can be written as Eq (21) ~ (23) which only
consider a single training example.

lossans = - logpT( s) - logpT(e) (21)
lossNA = - logpNA (22)

lossspan =
log ( ê - ŝ - T + 1),摇 ê - ŝ > L
log ( ŝ - ê + 1),摇 ŝ - ê > 0
0,摇 othe

ì

î

í

ïï

ïï r
(23)
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3摇 Experiments
3郾 1摇 Dataset

SQuAD 2郾 0 has 86 821 answerable questions and
43 498 unanswerable questions in its training data,
5 928 answerable questions and 5 945 unanswerable
questions in its development data. Two metrics are
used to evaluate the model performance: exact match
(EM) and a marcro鄄averaged F1 score which measures
the weighted average of the precision and recall rate at
character level.
3郾 2摇 Implementation details

The spacy tool is utilized to tokenize all the both
the question and the passage, and generate lemma,
part鄄of鄄speech and named entity tags. PyTorch is used
to implement our models.

The model uses word embedding with 300鄄dimen鄄
sional GloVe and 600鄄dimensional CoVe word vec鄄
tors, and only finetunes a 1 000 most frequent word
embedding weights during training. The embeddings
for the out鄄of鄄vocabulary are set to 0. All the hidden
sizes of BiLSTM in the interaction layer and prediction
layer are set to 300. Weight normalization is used.
The dropout rate is 0郾 1, the mini鄄batch size is set to
16. Adamax optimizer is used and its learning rate is
initialized to 0郾 001 and decrease it by 0郾 5 after each
10 epochs. The threshold of the NA classifier is set to
0郾 5. The threshold of the answer length threshold L is
10. The prediction iterative step T is also set to 10.
The best results are reached after 13 training epochs.

In this model lots of codes and ideas are borrowed
from SAN 2郾 0.
3郾 3摇 Results and analysis

SCDNet is evaluated on the development dataset
of SQuAD 2郾 0, and it achieves a F1 score of 72郾 43
with GloVe and CoVe embeddings. Our model can
achieve a NA accuracy of 76郾 96 which proves that
SCDNet is good at NA prediction. This is 1郾 6 percent
higher than our compared model SAN 2郾 0[4], which is
also tested on the development dataset with the classifi鄄
er threshold set to 0郾 5.

SAN 2郾 0 has a simple but effective MRC network

Table 2摇 Experiment results

Configuration
All NoAns

EM F1 ACC

BNA[2] 59. 8 62. 6 -

DocQA[2] 65. 1 67. 6 -

RMR + Verify[5] 70. 58 74. 8 -

U鄄Net[3] 70. 3 74. 0 80. 2

SAN 2. 0[4] 69. 27 72. 66 75. 3

SCDNet (with CoVe) 69. 19 72. 44 76. 96

structure, its network structure is easy to understand
and suitable for testing the differences between the two
ways of NA prediction, from the question鄄side or the
passage鄄side. Based on the frame of SAN 2郾 0, SCD鄄
Net model is built and shows the effectiveness of pre鄄
dicting NA probability by detecting the semantic dis鄄
crepancy between the question and the passage.

Comparing with SAN 2郾 0, SCDNet simplifies the
3鄄layer encoding BiLSTM in SAN 2郾 0 into 1鄄layer
BiLSTM. SCDNet adds a bi鄄gram convolution layer to
its encoding network, because it can help SCDNet to
be more sensitive of the order of words in the texts.

U鄄Net and RMR + Verify in Table 2 all get very
strong performances. But they are more complicated in
structure than SAN 2郾 0 and they all use ELMo which is
a more advanced pre鄄trained word embedding model
than CoVe.
3郾 4摇 Ablation study

To illustrate the effectiveness of the NA classifier
and answer length penalty, ablation studies are shown
in Table 3. Here are five models trained on the devel鄄
opment set: 1 ) SCDNet is our proposed model;
2) 鄄length penalty model is SCDNet without length
penalty; 3) 鄄length rectification is SCDNet without the
rectification on the candidate answer鄄span probabili鄄
ties; 4) 鄄length penalty and length rectification is an
SCDNet without both the length penalty in the loss
function and the probability rectification before evalua鄄
tion; 5) EOS NA means to remove the question鄄side
NA prediction part, and use the NA prediction from
the appended EOS vector of the passage feature HC in鄄
stead. 6) one Q2C means to remove the second last fu鄄
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sion attention Q2C layer.

Table 3摇 Ablation experiments

Configuration
HasAns All NoAns

EM F1 EM F1 ACC

1) SCDNet 64郾 04 70郾 54 69郾 19 72郾 44 76郾 96

2) 鄄length penalty 68郾 21 71郾 46 68郾 21 71郾 47 76郾 13

3) 鄄length rectification 60郾 46 65郾 89 63郾 09 67郾 03 76郾 59
4) 鄄length penalty and

length rectification
58郾 69 63郾 38 62郾 69 66郾 52 75郾 91

5) EOS NA 65郾 20 69郾 08 68郾 46 71郾 89 74郾 69

6) one Q2C 63郾 87 70郾 22 68郾 33 71郾 99 76郾 35

Fig. 2摇 Visualization of the sorted outputs of the NA BiLSTM layer

摇 摇 By adding the answer鄄length penalty, it gives a
0郾 93 percent performance boost compared to 2), the
best performance is got at the threshold 10 instead of

15 although 15 is commonly used as the answer length
limitation by other researchers. In addition, the an鄄
swer鄄span probability rectification step is indispensable
for our model as is shown in 3), this means that al鄄
though our network improves its performance by add
the answer length penalty, it still can benefit from
using an extra step of probability rectification. The rec鄄
tification method from SAN 2郾 0 codes is applied to re鄄
duce the answers爷 probability by multiplying a punish

factor 1
log( lans + 1) for those answers which have more

than 5 word, lans stonds for the answer length.
摇 摇 By comparing with 5), the SCDNet get a 0郾 55
percent promotion in F1 and 2郾 3 percent promotion in
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NA accuracy which proves the effectiveness of our
question鄄side based conflicts detection model. Moreo鄄
ver, our NA prediction network can also improve the
network爷s performance just as a jointly trained task for
the EOS based NA prediction model.

The two Q2C fusion attention layers in our model
are used to collect two different levels of passage infor鄄
mation, 6) in Table 3 shows that if we only use the
last passage information collection layer, the F1 score
will drop about 0郾 45.
3郾 5摇 Case study

To illustrate the effectiveness of our NA predic鄄
tion,the visualization of BiLSTM output HQ and maxout
output maxm(HQ) from Eq (13) are shown in Fig. 2.
The BiLSTM is used as NA semantic matching network
and the maxout is applied after it to detect the exist鄄
ence of semantic absence or conflict. The 256鄄dim HQ

are sorted according to the weights of the NA classifier
WNA because the elements multiplied with bigger
weights have more powerful impacts on the predicting
results. The NA classifier weights are sorted in a de鄄
scending order as shown in Fig 2 (b). Here, 3 differ鄄
ent question鄄answer cases for the same passage are giv鄄
en in Fig 2. Fig 2 ( a) is the passage. Fig 2 ( c)
shows an answerable question. Fig 2 (d) shows an un鄄
answerable case because of a semantic conflict, “Cali鄄
fornia Times冶 is conflicted with “Los Angeles Times冶
in the passage. Fig 2 (e) is an unanswerable case for
semantic absence of the word “absent冶, the word “ab鄄
sent冶 gets high values at the top 100 dimensions which
can be regarded as a sign of semantic discrepancy, this
discrepancy is caught by the maxout operation and be
recognized by the NA classifier.

4摇 Conclusion

SCDNet, a simple yet effective network for ma鄄
chine reading comprehension with unanswerable ques鄄
tions is proposed. It incorporates a BiLSTM + maxout
made semantic matching mechanism to check the se鄄
mantic absence and conflicts through the question
words, and get a 1郾 6 percent improvement in no鄄an鄄

swer accuracy compared to our baseline model SAN
2郾 0. Additionally, it is very useful to add an answer鄄
length penalty in the answer span prediction loss func鄄
tion, which brings about 1% improvement in F1 score.
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