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基于大偏差的无线传感网中采样速率策略研究
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摘要: 针对具有能量捕获装置以及可充电电池的无线传感网,为了使无线传感器具有根据可用能量自适应调整数

据采样速率的能力,所获得的能量具有随机性,定义了可等价表示信息获取度量的能量不足概率. 将调节数据采样

速率的问题定义为约束优化问题,使数据采样速率最大化,同时将能量不足概率保持在阈值以下. 利用经典的大偏

差理论估计能量不足概率. 实验结果表明,所提出的算法具有自适应能力,既能适应能量动态变化,又能适应信道

动态变化,提高了信息采集效率.
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Adaptive Data Sampling Rate Adjustment Based on Large Deviation
Theory in Wireless Sensor Networks

LIU Zhe
(Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China)

Abstract: We consider the wireless senor network which is equipped with an energy harvesting device
and a rechargeable battery, and the aim is to enable the sensor having the ability of adaptively adjusting
the data sampling rate according to the available energy. Since the stochastic nature of the harvested ener鄄
gy, we define the energy deficiency probability for equivalently characterizing an information acquisition
metric. We formulate the problem of adjusting data sampling rate as a constrained optimization problem,
maximizing the data sampling rate while keeping the energy deficiency probability below a threshold. The
classic large deviation theory is invoked for estimating the energy deficiency probability. Our experimental
results verify that the algorithms proposed have the adaptation capability to accommodate both the energy鄄
dynamics and the channel鄄dynamics for improving the information acquisition.
Key words: wireless sensor network; energy harvesting; large deviation theory; online measurement

摇 摇 In recent years, the energy harvesting(EH) tech鄄
nology is leading to significant interests in systems pow鄄
ered by harvested ambient energy. In contrast to tradi鄄
tional systems powered by battery, using energy from
nature not only reduces the carbon emission but also

sustains device equipped with a rechargeable battery
with an infinite lifetime. However, the intermittent and
stochastic nature of the harvested energy put forward a
fundamental challenge when applying EH technique.
Hence, in this paper, we propose an adaptive policy



for adjusting data sampling rate to maximize the effec鄄
tive information in wireless sensor application.

The application of EH technology in wireless sen鄄
sor network has attracted substantial research attention,
especially to seek novel EH scheduling policies for
improving the system performance. To mitigate effi鄄
ciency loss of workload, Ref. [1] proposed an archi鄄
tecture to achieve maximum energy efficiency tracking
for the overall sensor node. In Ref. [2], the authors
studied the properties of the conditional expected
rewards and further presented a sub鄄optimal threshold鄄
based transmission scheduling policy for EH sensors
nodes through maximizing the conditional expected
rewards with respect to data storage and energy stor鄄
age, respectively. By using virtual queues and tech鄄
niques from Lyapunov optimization, Ref. [3] formula鄄
ted a long鄄term time鄄averaged joint scheduling and
sensing allocation problem in wireless sensor networks
with finite energy and data buffers. Based on realistic
energy and network models, the authors of Ref. [4]
incorporated CPU鄄intensive edge operations with sens鄄
ing and networking to jointly optimize EH wireless sen鄄
sor network performance. Further, a MIMO network
control system with an EH sensor was considered in
Ref. [5], and MIMO precoding was designed at the
sensor so as to stabilize the unstable dynamic plant.
The work in Ref. [6] proposed a two鄄stage water filling
policy to achieve throughput maximization in EH and
power grid coexisting wireless communication systems.
In Ref. [7], the power鄄delay tradeoff is formulated as
a stochastic optimization problem, and solved by Lya鄄
punov optimization technique. The scenario that one
user harvests energy from an energy access point to
power its information transmission to a data access
point is investigated in Ref. [8]. It should be noted
that the works mentioned above focus on the energy
efficiency optimization. But currently the EH technolo鄄
gy offers only a small amount of energy storage and is
capable of harvesting only a trivial amount of energy.
Therefore, new technique for managing the energy
associated with sensor node is required.

In this paper, we focus on the estimation of ener鄄
gy deficiency probability (EDP) for characterizing the

degree of matching between the energy demand and the
harvested energy. We employ thelarge deviation theory
(LDT) to formulate a model for estimating the EDP,
which is applied to assist the sensor in promptly con鄄
trolling the data sampling rate. The proposed method
relies on online measurements instead of any prior sta鄄
tistical knowledge of the harvested energy and the
channel state. The main contributions of this paper are
summarized as follows:

1) We transform the requirement of information
efficiency into the energy deficiency which is kept low鄄
er than a desired level. Accordingly, the problem of
adjusting data sampling rate over EH aided wireless
sensor system is formulated as maximizing the sampling
rate subject to a constraint imposed on the EDP in
order to guarantee high information efficiency.

2) An EDP estimation model based on LDT is
proposed by monitoring the energy鄄buffer fullness and
its variations in the rechargeable battery. By applying
LDT, this model accurately characterizes the probabili鄄
ty of the rare events of energy deficiency, which assists
the sensor in controlling the data sampling rate.

3) We conduct numerical simulations for demon鄄
strating the effectiveness of the proposeddata sampling
rate adjustment algorithm. Q鄄learning, a greedy algo鄄
rithm is implemented as our benchmark algorithms.
The simulation results show that the proposed method
achieves an improved performance.

The rest of this paper is organized as follows. Sec鄄
tion 1 describes the system model and formulates the
data sampling rate adjustment problem. In Section 2,
we propose the EDP estimation method based on the
LDT. Section 3 derives the online measurement based
adaptive data sampling rate adjustment algorithm based
on the EDP estimation model. Our simulation results
and performance analysis are presented in Section 4.
Finally, the conclusions are offered in Section 5.

1摇 System model
We consider a wireless sensor equipped with an

EH device and a rechargeable battery having a limited
capacity, as depicted in Fig. 1. The device can col鄄
lect natural renewable energy from the ambience and
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store in the battery. By utilizing the observations of
the energy鄄buffer fullness and its variations in the
rechargeable battery, the prediction calculator esti鄄
mates the EDP for instructing the decision鄄maker to
generate the data sampler commands. The data sam鄄
pler executes the data sampling and forms a data
stream to control panel.

Fig. 1摇 System architecture for sensor wireless
communication

摇

We assume that this wireless sensor operates in a
time鄄slotted fashion which means the time is divided
into slots of equal duration and normalized to unity. At
the beginning of each time slot, the decision鄄maker
makes the data sampling rate command to control the
data sampler based on the battery level. Let Rn be the
data sampling rate made by decision鄄maker at time slot
n. Rn 沂{R0,R1,…,Rmax } characterizes the sensor
operation level. Higher Rn, implies more precise infor鄄
mation will transmit to control panel. Correspondingly,
the size of data that should be delivered is given by:

Dn = f(Rn) (1)
Where f (·) indicates the relationship between the
data sampling rate and data size. The wireless channel
is assumed to be constant over a slot duration, but it
changes at the slot boundaries. Let N0 be the white
Gaussian noise and W the wireless band width, accord鄄
ing to Shannon蒺s capacity formula, the amount of trans鄄
mission power in the nth time slot is

Pn = W
N0Hn

(2
Dn
dW - 1) (2)

where Hn is the channel state and d is the duration of a
slot.

Since the channel state Hn and the amount Dn of
the data are available for transmission during the time
slot n, the amount of energy E t

n required to transmit Dn

bit is calculated as:
E t

n = P(Hn,Dn)d (3)
Let Eh

n沂着 = {0,1,…,emax} denote the amount of
energy harvested in the nth time slot. The process Eh

n is
assumed to be an i. i. d random variable. Let Bn repre鄄
sent the energy stored in the battery at the beginning of
the nth time slot, and the capacity of the battery is
Bmax . The energy Eh

n harvested in the nth slot, is avail鄄
able until the beginning of the (n + 1)th slot. Hence,
the dynamics of the energy in the battery are character鄄
ized by

Bn + 1 = Bn - E t
n + Eh

n, n = {1,2,…} (4)
For sensor operation, the data transmission inter鄄

ruptions substantially reduce the precision of informa鄄
tion. Hence, it is desired that the battery always holds
sufficient energy for transmitting data of the forthcoming
time slots in order to avoid transmission interruptions.
Motivated by this, we define a low threshold of Bmin as
an indicator of the battery being partially depleted. In
order to characterize the energy deficiency, we define
the EDP as

pED = P(B < Bmin) (5)
where B is a random variable representing the energy鄄
buffer fullness. Higher EDP, pED, implies a lower
energy fullness in the near future, hence energy defi鄄
ciency is more likely to occur.

In order to achieve a more accurate data service,
the EDP should be kept low. Hence, the data trans鄄
mission problem in wireless sensor system is interpreted
as that of choosing the maximumdata sampling rate for
maximizing the information precision subject to a given
EDP, which can be formulated as

max
Rn沂{1,2,…,N}

Rn

s. t. P(B < Bmin)臆pSIR (6)
where pSIR is a given threshold value of sufferable inter鄄
rupt rate. In this optimization problem, we transform
the transmission interruptions into a probability con鄄
straint that the EDP is kept below a certain tolerable
level. Different values of pSIR correspond to different
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SIR levels.

2摇 Estimation model of energy defi鄄
ciency probability

摇 摇 We assume that the index of the current time slot
is n, and the current battery level is Bn, while Rn

represents the data sampling rate during the time slot .
We predict the EDP at the ( n + N) th (N > 0) slot
under the condition of supporting the data sampling rate
Rn in the future N time slots. Let Pn + N

ES denote the EDP
at the (n + N)th slot, which is defined as

Pn + N
ES = P(Bn + N < Bmin) (7)

where N is the length of the prediction interval.
2郾 1摇 Reinterpretation of energy deficiency proba鄄

bility
For a given time slot k, the reduction of the ener鄄

gy available for the transmitter is characterized by
驻Ek = E t

k - Eh
k (8)

where 驻Ek 沂{ - ehmax,…,0,1,…, etmax }. Let 仔i =
P(驻Ek = i) denote the probability that the energy
reduction of the battery is 驻Ek = i. Since E t

k is the
energy consumed in the kth slot and Eh

k is the energy
collected in the kth slot, the difference 驻Ek characteri鄄
zes the instantaneous energy mismatch between the
energy required for keeping Rn data sampling rate and
the harvested energy.

The total reduction of the energy in the recharge鄄
able battery during the period spanning from the nth
slot to the (n + N)th slot is characterized as

驻En + N = 移
N

i = 1
驻En + i (9)

Then, the energy鄄buffer fullness Bn + N in the (n +
N)th time slot is given as

Bn + N = Bn - 驻En + N (10)
According to Eq. (7), the EDP at the (n + N)th

slot is rewritten as
Pn + N

ES = P(Bn - 驻En + N < Bmin) (11)
We define the maximum tolerable average energy

reduction during each of the forthcoming N slots as

aES =
Bn - Bmin

N (12)

and the expected value of the average reduction of the
energy fullness in the battery in each slot during the

future n slots as

mES = [E
移
N

i = 1
驻En+i

]N (13)

where E[·] denotes the expectation operator. Fur鄄
thermore, mES逸aES implies while keeping the current
data sampling rate, after the forthcoming N slots,
transmission interruption will definitely occur.

Let us rewrite Eq. (11) as
Pn + N

ES = P(Bn - 驻En + N < Bmin) =

(P 驻En + N

N >
Bn - Bmin )N =

(P
移
N

i = 1
驻En+i

N > a )ES (14)

The term
移
N

i = 1
驻En+1

N in Eq. (14) represents the

average variation of the energy in the battery in each
slot, which is determined by the energy collection and
consumption, while aES is the tolerable average energy
reduction in each of the forthcoming N slots, which is
determined by the energy fullness of the battery in the
nth slot.
2郾 2摇 Large deviation theory based EDP estimation

Since our objective is to provide an interruption鄄
free data transmission, the occurrences of the transmis鄄
sion interruption are expected to be rare events.
According to Ref. [9], the LDT can be employed to
estimate the probability of rare or tail events. Hence,
Cram佴r蒺s theorem applied in the context of the LDT
constitutes an appropriate method of estimating the
EDP in Eq. (7).

According to Cram佴r蒺s theorem[10], the sequence
驻E i( i = 1,2,…) obeys the LDT which is rewritten as

lim
N寅肄

1
N log (P 1

N 移
N

i = 1
R i > )a = - I(a) (15)

where the function I ( a) is referred to as the “ rate
function冶. Therefore, if aES >mES, we have

lim
N寅肄

1
N log (P 1

N 移
N

i = 1
驻En + i > a )ES = - I(aES)

(16)
where
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I(aES) = sup
兹 > 0

{aES兹 - logM(兹)} (17)

and

logM(兹) {= log 移
兹tmax

i = -ehmax

仔iexp[ i兹]} (18)

The rate function I(aES) is usually referred as the
Fenchel鄄Legendre transform or convex conjugate[9] .
Note that both logM(兹) and the rate function I(aES)
are convex[9] .

Since Eq. (16) is logarithmically asymptotic, for
a sufficiently large N, the EDP of the (n + N) th slot
can be approximated by

Pn + N
ES 抑exp[ - NI(aES)] (19)

Owning to the rapid exponential decay of the EDP
estimate with N, a moderate value of N can be used to
acquire an accurate EDP estimate.
2郾 3摇 Online estimation of energy deficiency proba鄄

bility
In order to estimate the EDP according to Eq.

(19), aES, mES, 仔i are required. It is straightforward
to calculate aES according to Eq. ( 12 ). However,
because of the absence of any prior knowledge about
the probability distribution of 驻Ek, it remains an open
challenge to derive analytical expressions for mES and
仔i . Consequently, we have to utilize historical obser鄄
vations for estimating these parameters by invoking a
sliding window鄄based method.

Let us denote the observed sequence of the energy
fullness decrements in the battery by 驻E1, 驻E2, 驻E3,
…. The sliding window covers the Ns most recent
entries in this sequence, which is slid over this
sequence. For the nth window, the observation vector
is denoted by Wn = [驻En,驻En - 1,…,驻En - Ns + 1].

The parameter mES can be approximated by the
sample mean of the observation vector Wn, yielding

m̂ES =
移

n

i = n-Ns+1
驻E i

Ns
(20)

For the parameter 仔i, i沂{ - ehmax,…,0,1,…,
eTmax}, we propose the following estimation technique.

Let Ni denote the number of 驻Ek = i events hap鄄
pening within the sliding window, which is counted by

Ni = 移
n

k = n-Ns+1
I{ i}(驻Ek) (21)

where

I{ i}(驻Ek) =
1,摇 if 驻Ek = i
0,{ 摇 otherwise

(22)

is an indicator function. Then, the frequency of 驻Ek =
i can be estimated as

q̂i(n) =
Ni

Ns
(23)

Having too small an Ns may result in an excessive
estimation error of q̂i(n), while too large a value may
reduce the sensitivity of the estimation model to the
variance. Hence, Ns should be set to a moderate value
according to the timescale.

Although d̂ i ( n) may be used for estimating in
Eq. (18), it may result in an undesired fluctuation of
the EDP. Hence, we invoke an exponential smoothe鄄
ning of the estimated value, which is formulated as

仔̂i(n) = 籽仔̂i - 1 + (1 - 籽) q̂i(n) (24)
where the forgetting parameter 籽沂[0,1] controls the
weighting of historical estimates. This smoothening
method is especially useful in a non鄄stationary environ鄄
ment. If 籽 approaches 1, the current estimate 仔̂i (n)
largely depends on the most recent past estimate
仔̂i(n - 1), while if 籽 = 0, the past estimates are
neglected, and 仔̂i(n) entirely depends on the current
estimate q̂i(n). Specifically, 籽沂[0郾 7,0郾 9] is rec鄄
ommended in Gardner蒺s report[11] . By invoking the
estimation of 仔i in Eq. (18), we can now calculate
logM(兹) and finally estimate the EDP according to
Eq. (17) and Eq. (19).

3摇 Online measurement鄄based algo鄄
rithm for data sampling rate
adjustment

摇 摇 In this section, we will discuss the details of our
online measurement鄄based algorithm conceived for data
sampling rate adjustment, which invokes the online
EDP estimation model of Section 2 for finding the high鄄
est data sampling rate under our SIR constraint. The
problem(6) that maximizes the data sampling rate in
the nth slot can be solved according to:

P(Bn - E t
n(Rn) + Eh

n < Bmin)臆pSIR

P(Bn - E t
n(Rn + 1) + Eh

n < Bmin)逸p }
SIF

(25)

where En(Rn) denotes the energy allocated for trans鄄

331第 6 期摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 刘摇 哲: 基于大偏差的无线传感网中采样速率策略研究



mitting the data with Rn data sampling rate. Since the
current data sampling rate is Rn, the sequence Et

n(Rn +
1) is not observable. Hence, the EDP in the second
inequality of Eq. (25) cannot be directly calculated
according to the steps of Section 2. 3. Here, we con鄄
sider a heuristic iteration policy for solving Eq. (25).
The basic idea is to constrain the data sampling rate
adjustments to a single level, yielding Rn 沂{ Rn - 1,
Rn, Rn + 1} .

For the case of m̂ES逸aES, the average reduction
of the energy is higher than the tolerable reduction per
slot in the future N time slots. This implies that the
battery energy would run out after N slots, if the Rn

data sampling rate is executed. Correspondingly, the
transmission of the data stream would be interrupted
because of energy exhaustion. Therefore, in order to
prevent future information deficiency, the sensor
should reduce the transmission energy consumption by
reducing data sampling rate, which can be expressed
as

Rn + 1 = max(Rn - 1,R0) (26)

By contrast, for the case of m̂ES < aES, the average
reduction of the energy fullness in the forthcoming N
slots is below the tolerable average energy reduction per
slot. However, this does not necessarily imply that no
energy deficiency will happen in the future N time
slots, because m̂ES represents the average reduction per
slot, which cannot exactly characterize the specific
energy reduction in a single slot. Hence, energy defi鄄
ciency may still occur. Since m̂ES < aES, energy defi鄄
ciency remains a rare event. Hence, the LDT is imme鄄
diately applicable to characterize the EDP.

According to the estimation model of Section 2,
the EDP in the (n + N)th slot can be approximated as

P̂n + N
ES = exp[ - NI(aES)] (27)

Thus, the EDP P̂n + N
ES of the (n + N)th slot can be

estimated by applying the online measurement鄄based
method of Section 2郾 3 using a moderate prediction
interval of N.

Based on the above discussions, the proposed
online measurement鄄based adaptive data sampling
(OM鄄ADS) is summarized in Algorithm 1.

摇 Algorithm 1摇 OM鄄ADS
Data: the historical observations: B i, E t

i, and Eh
i

( i = {1,2,…,n}); the data sampling rate in the nth
slot: Rn;
the desired SIR level: pSIR; the SIR threshold P t; a
given constant KT; a temporary counter K.
While true do
摇 Calculate m̂ES and aES according to Eq. (20) and
Eq. (12).
摇 if m̂ES逸aES then
摇 摇 jn + 1饮jn - 1
摇 else
摇 Calculate P̂n + N

ES according to the steps in Section
2郾 3.
摇 if P̂n + N

ES 逸PSIR then
摇 摇 jn + 1饮jn - 1
摇 摇 else
摇 摇 摇 if P̂n + N

ES 臆RT then
摇 摇 摇 摇 摇 K饮K + 1
摇 摇 摇 摇 摇 if K逸KT then
摇 摇 摇 摇 摇 摇 摇 jn + 1饮jn + 1
摇 摇 摇 摇 摇 摇 摇 K饮0
摇 摇 摇 摇 摇 end
摇 摇 摇 摇 end
摇 摇 摇 end
摇 摇 end
end

4摇 Experimental results
In this section, we carried out a series of experi鄄

ments for evaluating the performance of the proposed
methods. In order to quantify the attainable perform鄄
ance improvements, we also implemented a heuristic
greedy method, an online Q鄄learning method[12] as
benchmark algorithms.

We consider a nondispersive Rayleigh fading
channel with bandwidth w = 2 MHz and noise spectral
density of N0 = 4 伊 10 - 9 W/ Hz. The amount of the
energy harvested is assumed to follow the Poisson
distribution. We also consider different data sampling
rates for different data transfers. In order to
characterize the capability of adaptive data sampling
rates, we set the harvest energy, varying expectations
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Fig. 2摇 Performance comparison for different
energy harvesting rates

摇

from 0郾 2 to 1郾 6 with the step size of 0郾 2. The amount
of the energy harvested is assumed to follow the Poisson
distribution.

For the proposed OM鄄ADS, the parameters were
set as follows: the length of sliding window was Ns =
110, the size of prediction interval was N = 50, the
forgetting parameter was 籽 = 0郾 7, the desired EDP
level was PSIR = 0郾 001 and the low threshold value was
PT = 0郾 1 伊 PSIR . For the Q鄄learning method, we follow
to set the learning rate and the discount factor to 1 and
0郾 8, respectively.

Fig. 2 ( a) characterizes different data sampling
rates versus the average energy harvest rate, while Fig.
2( b) characterizes the transmission interruption rates
that reflect the integrity of data collection versus the av鄄
erage energy harvest rate. It can be observed that al鄄
though the greedy method performs better than the oth鄄
er methods in terms of data sampling rates, it suffers
from a higher transmission interruption rate, especially
in situation of low energy harvest rate. This is because
the greedy method maximizes the data sampling rate

according to the current available energy in the batter鄄
y, it frequently suffers from energy scarcity, which
lead to the highest transmission interruption rate, thus
reducing the integrity of the sampled data. This implies
that excessive data collection may result in energy in鄄
sufficient in the future. Similarly, as the Q鄄learning
method merely aims for maximizing the system蒺s
throughput by adjusting the data sampling rate accord鄄
ing to the system蒺s state, but without considering ener鄄
gy storage. This implies that excessive data collection
may result in energy insufficient in the future. The pro鄄
posed OM鄄ADS method achieves a slightly worse data
sampling rate, but it gains a much lower transmission
interruption rate. The reason for this trend is that the
OM鄄ADS benefits from evaluating the energy shortage
probability of the forthcoming slot in each time slot for
prudently adjusting data sampling rate for keeping the
likelihood of energy shortage under a certain tolerance
level.

We also can see that as the capture energy increa鄄
ses, the data sampling rate of each algorithm increases
and the probability of transmission interruption is
reduced, and it meets our expectations.

5摇 Conclusions
We discussed the SIR鄄guaranteed adaptive data

sampling rate adjustment in wireless sensor network.
The SIR constraint is interpreted as keeping the energy
deficiency probability below a given threshold, in order
to reduce the rate of transmission interruptions that
substantially reduce the information efficiency. Large
deviation theory was invoked for estimating the EDP via
online measurements. A heuristic method, OM鄄ADS,
was proposed based on the EDP estimation to maximize
the information efficiency associated with the EDP con鄄
straint. The experimental results demonstrated that the
proposed adaptive data sampling rate adjustment meth鄄
ods is capable of effectively improving the information
efficiency while keeping the energy available for the fu鄄
ture.
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