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Adaptive Data Sampling Rate Adjustment Based on Large Deviation
Theory in Wireless Sensor Networks
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Abstract: We consider the wireless senor network which is equipped with an energy harvesting device
and a rechargeable battery, and the aim is to enable the sensor having the ability of adaptively adjusting
the data sampling rate according to the available energy. Since the stochastic nature of the harvested ener-
gy, we define the energy deficiency probability for equivalently characterizing an information acquisition
metric. We formulate the problem of adjusting data sampling rate as a constrained optimization problem,
maximizing the data sampling rate while keeping the energy deficiency probability below a threshold. The
classic large deviation theory is invoked for estimating the energy deficiency probability. Our experimental
results verify that the algorithms proposed have the adaptation capability to accommodate both the energy-
dynamics and the channel-dynamics for improving the information acquisition.
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In recent years, the energy harvesting( EH) tech-
nology is leading to significant interests in systems pow-
ered by harvested ambient energy. In contrast to tradi-
tional systems powered by battery, using energy from

nature not only reduces the carbon emission but also
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sustains device equipped with a rechargeable battery
with an infinite lifetime. However, the intermittent and
stochastic nature of the harvested energy put forward a
fundamental challenge when applying EH technique.

Hence, in this paper, we propose an adaptive policy
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for adjusting data sampling rate to maximize the effec-
tive information in wireless sensor application.

The application of EH technology in wireless sen-
sor network has attracted substantial research attention,
especially to seek novel EH scheduling policies for
improving the system performance. To mitigate effi-
ciency loss of workload, Ref. [1] proposed an archi-
tecture to achieve maximum energy efficiency tracking
for the overall sensor node. In Ref. [2], the authors
studied the properties of the conditional expected
rewards and further presented a sub-optimal threshold-
based transmission scheduling policy for EH sensors
nodes through maximizing the conditional expected
rewards with respect to data storage and energy stor-
age, respectively. By using virtual queues and tech-
niques from Lyapunov optimization, Ref. [3] formula-
ted a long-term time-averaged joint scheduling and
sensing allocation problem in wireless sensor networks
with finite energy and data buffers. Based on realistic
energy and network models, the authors of Ref. [4 ]
incorporated CPU-intensive edge operations with sens-
ing and networking to jointly optimize EH wireless sen-
sor network performance. Further, a MIMO network
control system with an EH sensor was considered in
Ref. [5], and MIMO precoding was designed at the
sensor so as to stabilize the unstable dynamic plant.
The work in Ref. [6 ] proposed a two-stage water filling
policy to achieve throughput maximization in EH and
power grid coexisting wireless communication systems.
In Ref. [ 7], the power-delay tradeoff is formulated as
a stochastic optimization problem, and solved by Lya-
punov optimization technique. The scenario that one
user harvests energy from an energy access point to
power its information transmission to a data access
point is investigated in Ref. [8]. Tt should be noted
that the works mentioned above focus on the energy
efficiency optimization. But currently the EH technolo-
gy offers only a small amount of energy storage and is
capable of harvesting only a trivial amount of energy.
Therefore, new technique for managing the energy
associated with sensor node is required.

In this paper, we focus on the estimation of ener-

gy deficiency probability (EDP) for characterizing the

degree of matching between the energy demand and the
harvested energy. We employ thelarge deviation theory
(LDT) to formulate a model for estimating the EDP,
which is applied to assist the sensor in promptly con-
trolling the data sampling rate. The proposed method
relies on online measurements instead of any prior sta-
tistical knowledge of the harvested energy and the
channel state. The main contributions of this paper are
summarized as follows;

1) We transform the requirement of information
efficiency into the energy deficiency which is kept low-
er than a desired level. Accordingly, the problem of
adjusting data sampling rate over EH aided wireless
sensor system is formulated as maximizing the sampling
rate subject to a constraint imposed on the EDP in
order to guarantee high information efficiency.

2) An EDP estimation model based on LDT is
proposed by monitoring the energy-buffer fullness and
its variations in the rechargeable battery. By applying
LDT, this model accurately characterizes the probabili-
ty of the rare events of energy deficiency, which assists
the sensor in controlling the data sampling rate.

3) We conduct numerical simulations for demon-
strating the effectiveness of the proposeddata sampling
rate adjustment algorithm. Q-learning, a greedy algo-
rithm is implemented as our benchmark algorithms.
The simulation results show that the proposed method
achieves an improved performance.

The rest of this paper is organized as follows. Sec-
tion 1 describes the system model and formulates the
data sampling rate adjustment problem. In Section 2,
we propose the EDP estimation method based on the
LDT. Section 3 derives the online measurement based
adaptive data sampling rate adjustment algorithm based
on the EDP estimation model. Our simulation results
and performance analysis are presented in Section 4.

Finally, the conclusions are offered in Section 5.

1 System model

We consider a wireless sensor equipped with an
EH device and a rechargeable battery having a limited
capacity, as depicted in Fig. 1. The device can col-

lect natural renewable energy from the ambience and
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store in the battery. By utilizing the observations of
the energy-buffer fullness and its variations in the
rechargeable battery, the prediction calculator esti-
mates the EDP for instructing the decision-maker to
generate the data sampler commands. The data sam-
pler executes the data sampling and forms a data

stream to control panel.

Energy
harvester

K _——1Ambient energy

Information Prediction
analyze calculator —
. Wireless Control
] .
L Deoia D channel panel
ec1E10n- e at]a i
maker sampler Feedback channel

Fig.1 System architecture for sensor wireless

communication

We assume that this wireless sensor operates in a
time-slotted fashion which means the time is divided
into slots of equal duration and normalized to unity. At
the beginning of each time slot, the decision-maker
makes the data sampling rate command to control the
data sampler based on the battery level. Let R, be the
data sampling rate made by decision-maker at time slot
n. R, e {R,,R,,-,R
operation level. Higher R

characterizes the sensor

max |
. » implies more precise infor-
mation will transmit to control panel. Correspondingly,
the size of data that should be delivered is given by
D, =f(R,) (1)
Where f( - ) indicates the relationship between the
data sampling rate and data size. The wireless channel
is assumed to be constant over a slot duration, but it
changes at the slot boundaries. Let N, be the white
Gaussian noise and W the wireless band width, accord-

ing to Shannon’s capacity formula, the amount of trans-

mission power in the nth time slot is

W o
AL (2)
055 n

P, =

n

where H, is the channel state and d is the duration of a

slot.

Since the channel state H, and the amount D, of
the data are available for transmission during the time
slot n, the amount of energy E) required to transmit D,
bit is calculated as:

E, =P(H,,
let E'ee=1{0,1,e

D,)d (3)
o | denote the amount of
energy harvested in the nth time slot. The process E! is
assumed to be an i. i. d random variable. Let B, repre-
sent the energy stored in the battery at the beginning of
the nth time slot, and the capacity of the battery is
B_ . The energy E" harvested in the nth slot, is avail-
able until the beginning of the (n +1)th slot. Hence,
the dynamics of the energy in the battery are character-
ized by

B

For sensor operation, the data transmission inter-

ll+l:Bn_EiL+E:’n:%l’z’...} (4>

ruptions substantially reduce the precision of informa-
tion. Hence, it is desired that the battery always holds
sufficient energy for transmitting data of the forthcoming
time slots in order to avoid transmission interruptions.
Motivated by this, we define a low threshold of B, as
an indicator of the battery being partially depleted. In
order to characterize the energy deficiency, we define
the EDP as

pw =P(B<B,,) (5)
where B is a random variable representing the energy-
buffer fullness. Higher EDP, p.,, implies a lower
energy fullness in the near future, hence energy defi-
ciency is more likely to occur.

In order to achieve a more accurate data service,
the EDP should be kept low. Hence, the data trans-
mission problem in wireless sensor system is interpreted
as that of choosing the maximumdata sampling rate for
maximizing the information precision subject to a given
EDP, which can be formulated as

max R
Rye 1,2, N

s.t. P(B<B,,,) <psn (6)

where pg;; is a given threshold value of sufferable inter-

n

rupt rate. In this optimization problem, we transform
the transmission interruptions into a probability con-
straint that the EDP is kept below a certain tolerable

level. Different values of pg, correspond to different
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SIR levels.

2 Estimation model of energy defi-
ciency probability

We assume that the index of the current time slot
while R,
represents the data sampling rate during the time slot .
We predict the EDP at the (n + N)th (N >0) slot
under the condition of supporting the data sampling rate
R, in the future N time slots. Let P;l" denote the EDP
at the (n + N)th slot, which is defined as

P;:;N:P<BVL+N<Bmin) (7)
where NV is the length of the prediction interval.

is n, and the current battery level is B

no

2.1 Reinterpretation of energy deficiency proba-
bility
For a given time slot k£, the reduction of the ener-
gy available for the transmitter is characterized by
AE, =E, - E} (8)
0,1, et

% Ymax

where AE, € { - e!

max 2

Let 7, =
P(AE,=i) denote the probability that the energy
reduction of the battery is AE, =i. Since E, is the
energy consumed in the kth slot and E} is the energy
collected in the kth slot, the difference AE, characteri-
zes the instantaneous energy mismatch between the
energy required for keeping R, data sampling rate and
the harvested energy.

The total reduction of the energy in the recharge-
able battery during the period spanning from the nth
slot to the (n + N)th slot is characterized as

N
AE"+N: Z AE‘n+i (9>

i=1

Then, the energy-buffer fullness B, , , in the (n +
N)th time slot is given as
B,.y=B, —-AE"" (10)
According to Eq. (7), the EDP at the (n + N)th
slot is rewritten as
PN =P(B, -AE""" <B,.) (11)
We define the maximum tolerable average energy
reduction during each of the forthcoming N slots as
B,-B,,,
aps =—

and the expected value of the average reduction of the

(12)

energy fullness in the battery in each slot during the

future n slots as

N
2 AEn+i

Mg =E[ = N

+ ] denotes the expectation operator. Fur-

] (13)

where E |
thermore, mpg = ayg implies while keeping the current
data sampling rate, after the forthcoming N slots,
transmission interruption will definitely occur.

Let us rewrite Eq. (11) as
PnEg E\‘T = P( B/l - AE" +;V < B“liﬂ ) =

AE’H,N Bu _Bmin )
P( N TN B
N
ZAEHH
P( £=1N >aES) (14)

Y AE,

i=1

The term in Eq. (14) represents the

average variation of the energy in the battery in each
slot, which is determined by the energy collection and
consumption, while a is the tolerable average energy
reduction in each of the forthcoming N slots, which is
determined by the energy fullness of the battery in the
nth slot.
2.2 Large deviation theory based EDP estimation

Since our objective is to provide an interruption-
free data transmission, the occurrences of the transmis-
sion interruption are expected to be rare events.
According to Ref. [9], the LDT can be employed to
estimate the probability of rare or tail events. Hence,
Cramér’s theorem applied in the context of the LDT
constitutes an appropriate method of estimating the
EDP in Eq. (7).

According to Cramér’s theorem

AE. (i=1,2,--+) obeys the LDT which is rewritten as

101 the sequence

N
Aliﬁrngogp (% ; Ri>a): -I(a) (15)

where the function I (a) is referred to as the “rate

function”. Therefore, if ays >my, we have

lileogP (L Z AE, ., > ag ) = —1(ag)
N—oo N i=1

(16)

where
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I(ag) =sHuL){aE39—10gM(0)} (17) where
1 if AE, =i
and Im(AEk) = o ! (22)

oL

max

logM (0) :log{ z m.explif] | (18)

i=—eh
L= ~€max

The rate function I( ay) is usually referred as the

Fenchel-Legendre transform or convex conjugate'”’.

Note that both logM () and the rate function I( ay)
are convex '’

Since Eq. (16) is logarithmically asymptotic, for
a sufficiently large N, the EDP of the (n + N) th slot
can be approximated by

PN =expl = Ni(ay) ] (19)

Owning to the rapid exponential decay of the EDP
estimate with V, a moderate value of NV can be used to
acquire an accurate EDP estimate.
2.3 Online estimation of energy deficiency proba-

bility

In order to estimate the EDP according to Eq.
(19), ay, my, 7, are required. It is straightforward
to calculate ayg according to Eq. (12). However,
because of the absence of any prior knowledge about
the probability distribution of AE,, it remains an open
challenge to derive analytical expressions for my, and
;. Consequently, we have to utilize historical obser-
vations for estimating these parameters by invoking a
sliding window-based method.

Let us denote the observed sequence of the energy
fullness decrements in the battery by AE,, AE,, AE,,

The sliding window covers the N, most recent
entries in this sequence, which is slid over this
sequence. For the nth window, the observation vector
is denoted by W, = [AE,,AE, ,,--+,AE, . ].

The parameter mys can be approximated by the

no

sample mean of the observation vector W, yielding

n

n

Y AE,

A i=n-N,+1
Mpg = ——— 20

ES NS ( )

For the parameter 7,, i€ | —e’ - 0,1,
e I, we propose the following estimation technique.

Let N, denote the number of AE, =i events hap-

pening within the sliding window, which is counted by

n

N, = Z

k=n-Ng+1

1, (AE,) (21)

0, otherwise
is an indicator function. Then, the frequency of AE, =
i can be estimated as

N
q,(n) Zﬁ (23)

Having too small an N, may result in an excessive
estimation error of ¢,(n) , while too large a value may
reduce the sensitivity of the estimation model to the
variance. Hence, N, should be set to a moderate value
according to the timescale.

Although d, (n) may be used for estimating in
Eq. (18), it may result in an undesired fluctuation of
the EDP. Hence, we invoke an exponential smoothe-
ning of the estimated value, which is formulated as

771:(”) :pﬁi—l +(1 _p>‘]Ai(n) (24)
where the forgetting parameter p € [0,1] controls the
weighting of historical estimates. This smoothening
method is especially useful in a non-stationary environ-
ment. If p approaches 1, the current estimate 7, (n)
largely depends on the most recent past estimate
7,(n-1), while if p = 0, the past estimates are
neglected, and 7,(n) entirely depends on the current
estimate ¢,(n). Specifically, p € [0.7,0.9] is rec-

ommended in Gardner’s report'"".

By invoking the
estimation of 7, in Eq. (18), we can now calculate
logM(0) and finally estimate the EDP according to

Eq. (17) and Eq. (19).
3 Online measurement-based algo-

rithm for data sampling rate

adjustment

In this section, we will discuss the details of our
online measurement-based algorithm conceived for data
sampling rate adjustment, which invokes the online
EDP estimation model of Section 2 for finding the high-
est data sampling rate under our SIR constraint. The
problem (6) that maximizes the data sampling rate in
the nth slot can be solved according to.

P(B,-E,(R,) +E, <B,,) <ps
P(B,-E (R, +1) +E} <B..) =py

where £, (R,) denotes the energy allocated for trans-

(25)



134 | T/ = R =~ = O ¢

841 &

mitting the data with R, data sampling rate. Since the

current data sampling rate is R, the sequence E, (R, +

1) is not observable. Hence, the EDP in the second
inequality of Eq. (25) cannot be directly calculated
according to the steps of Section 2. 3. Here, we con-
sider a heuristic iteration policy for solving Eq. (25).
The basic idea is to constrain the data sampling rate
adjustments to a single level, yielding R, € { R
R, R}

no

n-19

For the case of m,,=a,, the average reduction
of the energy is higher than the tolerable reduction per
slot in the future N time slots. This implies that the
battery energy would run out after N slots, if the R,
data sampling rate is executed. Correspondingly, the
transmission of the data stream would be interrupted
because of energy exhaustion. Therefore, in order to
prevent future information deficiency, the sensor
should reduce the transmission energy consumption by
reducing data sampling rate, which can be expressed

as

R,., =max(R, -1,R,) (26)

n+l

By contrast, for the case of m,, <a,, the average
reduction of the energy fullness in the forthcoming N
slots is below the tolerable average energy reduction per
slot. However, this does not necessarily imply that no
energy deficiency will happen in the future N time
slots, because m represents the average reduction per
slot, which cannot exactly characterize the specific
energy reduction in a single slot. Hence, energy defi-
ciency may still occur. Since m < ay, energy defi-
ciency remains a rare event. Hence, the LDT is imme-
diately applicable to characterize the EDP.

According to the estimation model of Section 2,
the EDP in the (n + N)th slot can be approximated as

PV =exp[ - NI(ay) ] (27)

Thus, the EDP 13;;:\ of the (n + N)th slot can be
estimated by applying the online measurement-based
method of Section 2.3 using a moderate prediction
interval of N.

Based on the above discussions, the proposed

online measurement-based adaptive data sampling

(OM-ADS) is summarized in Algorithm 1.

Algorithm 1 OM-ADS
Data the historical observations: B,, E!, and E"
(i= % 1,2,
slot; R, ;
the desired SIR level: pqy; the SIR threshold P,; a
given constant K,; a temporary counter K.
While true do

Calculate my and a,s according to Eq. (20) and
Eq. (12).

if m,,=a,, then

Juor< T~ 1
else

,n}); the data sampling rate in the nth

Calculate 13:;' M according to the steps in Section
2.3.
if Pi;" =P, then
Josr €7, —1
else
if P.2V<R, then
K—K +1
if K=K, then
Jner* T, +1
K0
end
end
end
end

end

4 Experimental results

In this section, we carried out a series of experi-
ments for evaluating the performance of the proposed
methods. In order to quantify the attainable perform-
ance improvements, we also implemented a heuristic
greedy method, an online Q-learning method'"’ as
benchmark algorithms.

We consider a nondispersive Rayleigh fading
channel with bandwidth w =2 MHz and noise spectral
density of N, =4 x 107> W/Hz. The amount of the
energy harvested is assumed to follow the Poisson
distribution. We also consider different data sampling
rates for different data transfers. In order to
characterize the capability of adaptive data sampling

rates, we set the harvest energy, varying expectations
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Fig.2 Performance comparison for different

energy harvesting rates

from 0. 2 to 1. 6 with the step size of 0. 2. The amount
of the energy harvested is assumed to follow the Poisson
distribution.

For the proposed OM-ADS, the parameters were
set as follows; the length of sliding window was N, =
110, the size of prediction interval was N =50, the
forgetting parameter was p = 0.7, the desired EDP
level was Pqy =0.001 and the low threshold value was
P, =0.1xPgy. For the Q-learning method, we follow
to set the learning rate and the discount factor to 1 and
0. 8, respectively.

Fig. 2 (a) characterizes different data sampling
rates versus the average energy harvest rate, while Fig.
2(b) characterizes the transmission interruption rates
that reflect the integrity of data collection versus the av-
erage energy harvest rate. It can be observed that al-
though the greedy method performs better than the oth-
er methods in terms of data sampling rates, it suffers
from a higher transmission interruption rate, especially
in situation of low energy harvest rate. This is because

the greedy method maximizes the data sampling rate

according to the current available energy in the batter-
y, it frequently suffers from energy scarcity, which
lead to the highest transmission interruption rate, thus
reducing the integrity of the sampled data. This implies
that excessive data collection may result in energy in-
sufficient in the future. Similarly, as the Q-learning
method merely aims for maximizing the system’s
throughput by adjusting the data sampling rate accord-
ing to the system’s state, but without considering ener-
gy storage. This implies that excessive data collection
may result in energy insufficient in the future. The pro-
posed OM-ADS method achieves a slightly worse data
sampling rate, but it gains a much lower transmission
interruption rate. The reason for this trend is that the
OM-ADS benefits from evaluating the energy shortage
probability of the forthcoming slot in each time slot for
prudently adjusting data sampling rate for keeping the
likelihood of energy shortage under a certain tolerance
level.

We also can see that as the capture energy increa-
ses, the data sampling rate of each algorithm increases
and the probability of transmission interruption is

reduced, and it meets our expectations.

5 Conclusions

We discussed the SIR-guaranteed adaptive data
sampling rate adjustment in wireless sensor network.
The SIR constraint is interpreted as keeping the energy
deficiency probability below a given threshold, in order
to reduce the rate of transmission interruptions that
substantially reduce the information efficiency. Large
deviation theory was invoked for estimating the EDP via
online measurements. A heuristic method, OM-ADS,
was proposed based on the EDP estimation to maximize
the information efficiency associated with the EDP con-
straint. The experimental results demonstrated that the
proposed adaptive data sampling rate adjustment meth-
ods is capable of effectively improving the information
efficiency while keeping the energy available for the fu-

ture.
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