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Polynomial Model with Feedback for Digital Predistortion
of Power Amplifiers

ZHAO Xia, LI Zhan-ning

(College of Electronics and Information Engineering, Tongji University, Shanghai 201804, China)

Abstract ; The digital predistortion is a cost-effective way to the linearize power amplifiers. Memory poly-
nomial is one of the most popular DPD models. However, these models cannot get a good compromise be-
tween accuracy and complexity. The author proposes a feedback-based model to characterize DPD. The
model not only uses the input information, but also uses the past output information. Simulations show

that the model can linearize the magnitude and phase nonlinearity of power amplifiers more effectively.
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Power amplifier (PA) is indispensable to modern

. - 1
wireless communication systems[ :

. On the one hand,
PA is inherently nonlinear and is supposed to work
near saturation region to get high efficiency. On the
other hand, nonconstant envelope signals tend to drive
PA to saturation region easily and lead to nonlinear dis-
tortion. Additionally, as the signal bandwidth widens,
memory effects in PA often arise due to thermal effects
and large time constants in dc-bias circuits’>'. As a

result of the nonlinearity as well as memory effects, PA

exhibits out-of-band and in-band distortion, which
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341 Therefore, linear-

degrades communication quality'
izing PA is an important problem.

Among all linearization techniques, digital predis-
tortion ( DPD) is one of the most promising tech-
nique'"’. DPD has the inverse nonlinear characteristics
of PA. When implemented before PA | the whole sys-
tem works like a linear system.

Look-up table (LUT) is one kind of efficient pre-
distortion. However, the drawbacks of LUT based

methods are large RAM storage and slow convergence

speed, especially when memory effects are taken into
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consideration”’. We will only focus on those polyno-
mials based models.

One of the most accurate polynomial based models
is truncated Volterra series''’. However, as the non-
linearity order and memory depth become severe, the
number of coefficients of truncated Volterra series
increases drastically. In practical applications, some
Volterra-based models are proposed ®*’. These models
have limited accuracy. When describing a PA with
higher order nonlinearity and deeper memory effect,
they may show inadequacy.

Besides Volterra series based models, there is
another kind of nonlinear model called bilinear mod-
el®!. Bilinear model is a one-dimensional polynomial
which adds feedback terms. With the introduced feed-
back terms, this model can express the nonlinearity
more effectively than second order Volterra series.
Though bilinear polynomial has better performance than
second order Volterra series, no studies on bilinear
model in DPD have appeared in the open literature to
the best of our knowledge.

A modified bilinear polynomial with higher order
nonlinearity is presented to characterize DPD. It can
be seen as a traditional Volterra-based model combined
with the feedback information. Using the same number
of coefficients, the proposed model is more accurate
than Volterra based models such as memory polynomial
(MP) and general memory polynomial (GMP). Simu-
lation results demonstrate the accuracy and robustness
of this new model.

The rest of this paper is organized as follows. In
Section 1, bilinear polynomial and modified bilinear
polynomial are introduced. In Section 2, identification
algorithms for modified bilinear polynomial are presen-
ted. Section 3 demonstrates the effectiveness of the
modified bilinear model. Finally, conclusion is shown

in Section 4.

1 Model Description

A general bilinear polynomial is defined as:

Ny-1

y(n) = ; ay(n-1i) +

55 40 &
262 byy(n-j)x(n-1) + Z cx(n—i) (1)

where x(n) and y(n) are input and output of bilinear

model. a;, b, ., and ¢, are the coefficients. The model

)
is composed of three parts: the first part which contains
N, — 1 past output information is called output termj;
the second part is the cross term and it is related with
past input and output information; the last part is the
input term. Owing to the feedback information y(n) in
the output term and cross term, bilinear polynomial
uses fewer coefficients to achieve better performance
compared with second order Volterra series.

However, bilinear model cannot characterize a
system with higher order nonlinearity, because all three
parts in (1) are one-dimensional terms. ( Since input
terms and output terms only have first order expres-
sion, bilinear polynomial model is commonly called as
a one-dimensional model, not one-order model. ) In
order to apply the bilinear polynomial to characterize
PA, we are going to make some appropriate modifica-

tion as follows:

0y-1 k,
y(n) = %, 2 a,,y(n=q,)"+
q‘—lk =
Qey=1 Q=1 K,
z 2 z ‘71»‘1(» y(n qf))x(n qcx)J +
Gey=1 qey =0 k,
0.-1 K,

2 z qukxx<n_q%)kx (2)
4x=0 k=1

First, we transform those one-dimensional terms to
higher order nonlinearity terms, e. g. , output terms are
changed to y (n - qy)ky, cross terms are changed to
ly(n-q,)x(n~-q,) 1% ete. K,, K, and K, are non-
linear order of each term. When K, K, and K, are all
equal to 1, the expression (2) returns to the original
form of (1). Variable i and j, N, and N, are all
replaced by ¢ and Q to denote memory depth, which is
the general notations for DPD.

Note that, bilinear polynomial may cause instabil-
ity owing to the feedback terms. The instable phenome-
non occurs when the nonlinear order and/or memory
depth are large enough. In [10], some stability prob-
lems of bilinear model are discussed. We do not dis-

cuss the stability problem theoretically, but we will



s B RS,

— R T A5 R R TR AR A 77

present a fairly stable model.

When describing a high order nonlinearity, we
find that the cross term in (2) has little effect on
improving the modeling accuracy, but these terms
introduce many coefficients which can easily lead to
instability. The cross term is the only nonlinear term in
the original one-dimensional bilinear polynomial (1).
However, when we have some modification shown as
(2), each term has the capability to characterize non-
linearity. During the simulation, we find that the out-
put term in (2) includes enough feedback information
to represent the memory effect and the superiority of
cross term is much less than that of its original format.

Therefore, (2) can be modified in a further step:

0,-1 K,
y(n) = X X ayy(n=q)"+
ok
2 e ux(n-g)t (3)
G =0k, =1

Equation (3) is able to model a system with high
order nonlinearity and deep memory effect. In a real
world application, PA usually deals with signals whose
bandwidth is much less than its center frequency, and
therefore (3) can be further simplified as that of [6].
Assuming that the real input signals x(n) and real out-
put signals y(n) are expressed by their baseband com-

plex signals x,(n) and y,(n) .

ejZTrf[)nxC < n) +e —JZTrj(w * (n)

x(n) =Re | e”™x, (n) | =

2
(4)
J2“T/0" J2“T/0” *
_ Pafon y.(n) +e . (n)
y(n) =Re{e”™"y (n)} = 5

(5)
where (+) " denotes complex conjugate; f; is the cen-
ter frequency, and it is also called carrier frequency.
Given (3), (4) and (5), we have

"My (n) +e Py (n)
2

[ ejZ-rrfOux(‘ ( n-gq, ) +e —jZWfOnxc ( n-q, ) ky
530 | | +
45 =0 k= - 2
0‘2‘ 2 [eﬂ“f()"yxn —q,) +e "™y (n-q,) ]
=0ky=1 ! 2

(6)

In signal processing, we only concern about signal
components near center frequency. Therefore, we dis-
card signals of other frequency components, and obtain

the following equation ;

jZTK/OrL _
y.(n) =
ky—1
i (n-g,) Ty (n-g) T
Ay e n-gq, n-gq, +
-1 k=1
k—od(l
D=1 K.
JZfrrfon( - herD By o)
2 ) — 2
Y Y eur (n-g) * x (n-q)
4x=0 k=1
kx:()d(l

(7)
Combining similar terms and replacing baseband

signals yL(n) and x,(n) with y(n) and x(n) result in

y(n) = Z Z a,,y(n=q,)ly(n-g)1""

0,-1

Kx
Y X cux(n—g)lx(n-g) 1" (8)

020 k=1

ky =odd
Equation (8) is derived from bilinear polynomial
and is properly modified for DPD application. Com-
pared with those Volterra based model, the proposed
model adds past output information to predict current

We will
show that the model based on (8) is fairly robust and

output and only use those odd order terms.

outperform traditional Volterra based models.
It should be noted that,

methods to modify the original bilinear polynomial, as

there are many other

long as the stability is satisfied. We only discuss (8).

2 Model Identification

2.1 Indirect Learning Architecture

Indirect learning architecture (ILA) is an effi-
cient method for identifying DPD model. It does not
need to construct the PA model, but only uses the out-
put data and input data of PA to estimate the coeffi-
cients of a DPD model. Fig. 1'*! shows the block dia-
gram of ILA. In this architecture, DPD model is iden-
tified at training block A, and then inserted between
original input signal x (n) and PA input. Training
block A uses y(n) and z(n) to estimate its coeffi-
cients, where y(n) and z(n) are the output and input

of PA respectively. (At first, we use x(n) in place of
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z(n). After the DPD is implemented, we use z(n) to

update the coefficients. )

x(n) [ Predistorter | z(n) Power y(n)
(Copy of A) 1 Amplifier

e(n)

4
D
A

I Predistorter
E Training(A)

Fig. 1 Indirect learning architecture of digital predistortion

2.2 Algorithms for Coefficients Identification
From (8) and Fig. 1, “block A” can be

expressed as

0.1 K,
z(n) = z z aqﬁlzw(n—qz)lzx(n—q:)lk‘_l+
o= ku::mlid
0,-1 K,
2 X byy(n-g)ly(n-g)1"" (9)
q,=0 k,=1 o
: k= odd

where z denotes the past output information. There are

two major methods to determine 2", If Zis calculated

through current model coefficients, it is called output-

error method , but if z'is sampled from z, it is called the
equation-error method. We will discuss algorithms for
both methods.

For linearly represented polynomial, it is feasible
to extract the coefficients by using linear system estima-
tion theory such as least squares (LS). Sometimes,
because of high correlation between each element of the
polynomial , the calculation of the inverse matrix tends
to be time consuming and unstable. Orthogonal polyno-
mials show great advantages in avoiding numerical
instability ' .

LS can be applied to equation-error method direct-
ly. For output-error method, we need to set a group of
initial coefficients first, and calculate output z (n),
z2(n-1), z2(n=2),-, z(n - Q. +1) iteratively as
time n increases. Then LS is applied to update initial
coefficients. Calculating a new set of output and upda-
ting coefficients repeatedly until coefficients converge.

Recursive LS (RLS) is a popular adaptive algo-
rithm. Adaptive algorithm is an algorithm which starts

from an initial point, and adjusts the coefficients

dynamically according to newly sampled input and out-
put. Compared with LS algorithms, adaptive algorithm
requires less storage space. Once initial value is prop-
erly set, the coefficients always converge to stable
states. RLS is also applicable for both equation-error
method and output-error method. As a result, we
choose RLS to extract the coefficients of (9).
Rewriting (9) in a matrix form:

z(n) =a'u(n) (10)
where @ are the coefficients and u(n) are polynomials
of inputs and outputs.

Omitting the tedious and complicated mathemati-
cal derivation, the final RLS procedure is
a(n) =a(n-1) +g(n)[z(n) —u'(n)a(n-1)]
(11)
Cln-Du'(n) __ ()
l+u (n)C(n-1u"(n)
C(n)=C(n-1) -g(n)u"(n)C(n-1) (13)

Equation (13) uses a recursive way to update

g(n) =

a(n) which requires less storage memory and improves
numerical instability.

Note that in the simulation, equation-error method
has a slightly better performance than output-error
method, and it is easier to implement. Therefore,
allthe following results are calculated by equation-error

method.

3 Simulation Results

In this section, simulations are implemented to
demonstrate the effectiveness of the proposed modified
bilinear model. All results presented are simulated in
Matlab. Fig. 2 shows the simulation diagram. The
input signal is a three-carrier wideband code division
multiple access (WCDMA ) signal, and it has peak-to-
average power ratio ( PAPR) of about 6 dB. We will
linearize different PA models, including an odd-order-
only memory polynomial model and a three-branch par-
allel Wiener model. The input power is properly adjus-
ted to make the PA to operate at about 5 dB power back
off point. During simulation, we first sample the input
and output signals of PA. With these signals, we then
estimate the proposed DPD model coefficients. Finally,
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we cascade the proposed DPD model to the PA, and
test its performance, including power spectral density,
AM/AM characteristic, AM/PM characteristic, nor-
malized mean squared error (NMSE) etc. Additional-
ly, we will compare the proposed DPD model with
some widely used DPD models, e. g. MP, GMP.

| pa S[:ctrum
Input Deope
Sy e B

Fig.2 Block diagram of simulation

Odd-order-only memory polynomial model is

expressed as'®’

y(n) = Z z:: cz2(n=10)1z(n-1) [m-t (14)

m = odd

The coefficients are extracted from an actual class
AB PA which can be referred from [8].

Set the coefficients [ Q. Q, K. K ] of (9) to [31
3 5]. Fig. 3 shows the power spectral density at the
output of the PA with and without a DPD.

Fig. 3 indicates DPD can bring down the spectral
regrowth remarkably. The proposed modified bilinear

polynomial model outperforms traditional DPD models

obviously.
20
"""" Original signal
ok == Without DPD
— Bilinear DPD
o0k + GMP
N
=
= -40r
=
<
_60}
_80}
~100 ! . . . s ! .
-200 -150 -100 -50 0 50 100 150 200

9572 /M Hz

Fig.3 Power spectral density with and without DPD

Tab. 1 lists the number of coefficients and NMSE
performance of different DPDs shown in Fig. 3.

It can be seen from Tab. 1, GMP uses a large
number of coefficients but only gets a small progress
compared with MP. However, the proposed modified
bilinear model shows great improvement on linearizing

PA, and uses the fewest number of coefficients to bring

down the NMSE to —65. 08 dB.

Tab. 1 Comparison for coefficients and NMSE of different

DPD models ( odd-order-only memory polynomial

PA model)
Model Number of  NMSE/
Model
dimensions coefficients dB
MP [KQ]=[52] 10 -51.54
(K, 0. K, Q L, K Q. L] =

GMP 22 -53.77

[52321321]

Modified [Q.0,K.K, ] =
i 7 -65.08

bilinear model [3135]

The AM/AM and AM/PM characteristics of PA
before and after the proposed DPD are given in Fig. 4
and Fig. 5. It shows that the phase distortion can be
decreased very well. (To show AM/AM characteristics
clearly, we only draw a part range of the AM/AM

plot. )
0.60
4
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0.56F
L 2
0.54 s
052t y
0.50f #f-'
0.48} ¥
0.46} L
044}
042}
0.40 1 1 1 1 1 1 1 1 1
0.400.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60

Normalized input

Normalized output

« with DPD
+ without DPD

Fig.4 AM/AM characteristics for odd-order-only memory

polynomial with and without bilinear model based

DPD
5
4+ « with DPD
3 | & + without DPD
~ 2
* +
=
=
L
A
=
=

0 01 02 03 04 05 0.6 0.7 08 09 L0

Normalized input

-5

Fig. 5 AM/PM characteristics for odd-order-only memory
polynomial with and without bilinear model based

bPD
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We also use three-branch parallel Wiener model
as our PA for comparison. As shown in Fig. 6, H,(+)
is an Linear Time Invariant (LTI) block, and F,(-)

is a memoryless nonlinear block.

| IO
L6 ] |

Fig.6 Parallel Wiener model diagram

All parameters of this Parallel Wiener model can
be referred from [8]. We still set the coefficients [ (.
Q,K.K ] of (9) to [3135]. The rectified AM/AM
and AM/PM are shown in Fig. 7 and Fig. 8.

1.0
09f #
g
0.8} ' g
= 0.7F ”#
Zo06f
(=}
= 0.5F
g
= 0.4
£ 03}
“ 02tk « with DPD
o1 - + without DD
O .‘* L 1 1 1 L 1 1 1 1
0 01 02 03 04 05 06 0.7 08 09 1.0
Normalized input
Fig. 7 AM/AM characteristics for three-branch parallel
Wiener model with and without bilinear model
based DPD
5 F3 N
4r « with DPD
,{7*' ¥ + without DPD
R '?’i;,. 3
¥
L M
o 2
% 1
%0
e
5 -1
=
-2
-3
-4
_5 i
"0 .1 02 03 04 05 06 0.7 0.8 09 1.0
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Fig.8 AM/PM characteristics for three-branch parallel Wie-

ner model with and without bilinear model based DPD

the number of coefficients and

NMSE performance are listed in Tab. 2.

Furthermore ,

For three-branch parallel Wiener model, bilinear

model still shows the best modeling accuracy. In Tab.

2, bilinear model uses the fewest coefficients and

achieves the best NMSE performance.

Tab.2 Comparison for coefficients and NMSE of different
DPD models ( three-branch parallel Wiener PA

model )
Model Number of  NMSE/
Model
dimensions coefficients dB
MP [KQ]=[52] 10 -59.17
[K, 0. K QLK. Q. L]=

GMP 22 -61.23

[52321321]

Modified [Q.0,K. K] =
’ 7 -70.32

bilinear model [3135]

We use different PAs to test our DPD model.
Results show that our modified bilinear polynomial
model is efficient and robust for both odd-order-only
memory polynomial PA model and a three-branch par-
allel Wiener PA model. It can compensate the magni-
tude and phase nonlinearity of PA very well. The most
important thing is that it uses relatively fewer coeffi-
cients to express high order nonlinearity and deep

memory effect than traditional DPD models.

4 Conclusions

A novel model for PA linearization is proposed.
This model uses feedback terms to improve its perform-
ance. Proper modification is made to the model to
decrease its coefficients and fit applications in DPD.
Appropriate RLS algorithms are derived to extract coef-
ficients. Simulation results show that the model can

effectively linearize PA in both magnitude and phase.
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