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一种新的基于反馈的数字预失真器模型

赵摇 霞,摇 李瞻宁
(同济大学 电子与信息工程学院, 上海 201804)

摘要: 数字预失真器是线性化功率放大器的有效工具. 记忆多项式等模型难以兼顾模型的精确性和复杂程度. 为

解决该问题,提出了一种基于反馈的多项式模型建模数字预失真器. 不仅使用输入信息,还使用过去时刻的输出信

息,用较少的系数个数对高非线性及深记忆效应的功率放大器建立模型. 仿真结果显示,该模型比一些常见的模型

可更有效地缓解功率放大器的幅值和相位失真.
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Polynomial Model with Feedback for Digital Predistortion
of Power Amplifiers
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Abstract: The digital predistortion is a cost鄄effective way to the linearize power amplifiers. Memory poly鄄
nomial is one of the most popular DPD models. However, these models cannot get a good compromise be鄄
tween accuracy and complexity. The author proposes a feedback鄄based model to characterize DPD. The
model not only uses the input information, but also uses the past output information. Simulations show
that the model can linearize the magnitude and phase nonlinearity of power amplifiers more effectively.
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摇 摇 Power amplifier (PA) is indispensable to modern
wireless communication systems[1] . On the one hand,
PA is inherently nonlinear and is supposed to work
near saturation region to get high efficiency. On the
other hand, nonconstant envelope signals tend to drive
PA to saturation region easily and lead to nonlinear dis鄄
tortion. Additionally, as the signal bandwidth widens,
memory effects in PA often arise due to thermal effects
and large time constants in dc鄄bias circuits[2] . As a
result of the nonlinearity as well as memory effects, PA
exhibits out鄄of鄄band and in鄄band distortion, which

degrades communication quality[3鄄4] . Therefore, linear鄄
izing PA is an important problem.

Among all linearization techniques, digital predis鄄
tortion ( DPD) is one of the most promising tech鄄
nique[1] . DPD has the inverse nonlinear characteristics
of PA. When implemented before PA, the whole sys鄄
tem works like a linear system.

Look鄄up table (LUT) is one kind of efficient pre鄄
distortion. However, the drawbacks of LUT based
methods are large RAM storage and slow convergence
speed, especially when memory effects are taken into



consideration[5] . We will only focus on those polyno鄄
mials based models.

One of the most accurate polynomial based models
is truncated Volterra series[1] . However, as the non鄄
linearity order and memory depth become severe, the
number of coefficients of truncated Volterra series
increases drastically. In practical applications, some
Volterra鄄based models are proposed[6鄄8] . These models
have limited accuracy. When describing a PA with
higher order nonlinearity and deeper memory effect,
they may show inadequacy.

Besides Volterra series based models, there is
another kind of nonlinear model called bilinear mod鄄
el[9] . Bilinear model is a one鄄dimensional polynomial
which adds feedback terms. With the introduced feed鄄
back terms, this model can express the nonlinearity
more effectively than second order Volterra series.
Though bilinear polynomial has better performance than
second order Volterra series, no studies on bilinear
model in DPD have appeared in the open literature to
the best of our knowledge.

A modified bilinear polynomial with higher order
nonlinearity is presented to characterize DPD. It can
be seen as a traditional Volterra鄄based model combined
with the feedback information. Using the same number
of coefficients, the proposed model is more accurate
than Volterra based models such as memory polynomial
(MP) and general memory polynomial (GMP). Simu鄄
lation results demonstrate the accuracy and robustness
of this new model.

The rest of this paper is organized as follows. In
Section 1, bilinear polynomial and modified bilinear
polynomial are introduced. In Section 2, identification
algorithms for modified bilinear polynomial are presen鄄
ted. Section 3 demonstrates the effectiveness of the
modified bilinear model. Finally, conclusion is shown
in Section 4.

1摇 Model Description
A general bilinear polynomial is defined as:

y(n) = 移
N2-1

i = 1
aiy(n - i) +

移
N1-1

i = 0
移
N2-1

j = 1
bijy(n - j)x(n - i) + 移

N1-1

i = 0
cix(n - i) (1)

where x(n) and y(n) are input and output of bilinear
model. ai, bi,j, and ci are the coefficients. The model
is composed of three parts: the first part which contains
N2 - 1 past output information is called output term;
the second part is the cross term and it is related with
past input and output information; the last part is the
input term. Owing to the feedback information y(n) in
the output term and cross term, bilinear polynomial
uses fewer coefficients to achieve better performance
compared with second order Volterra series.

However, bilinear model cannot characterize a
system with higher order nonlinearity, because all three
parts in (1) are one鄄dimensional terms. (Since input
terms and output terms only have first order expres鄄
sion, bilinear polynomial model is commonly called as
a one鄄dimensional model, not one鄄order model. ) In
order to apply the bilinear polynomial to characterize
PA, we are going to make some appropriate modifica鄄
tion as follows:

y(n) = 移
Qy-1

qy = 1
移
ky

ky = 1
aqykyy(n - qy) ky +

移
Qcy-1

qcy = 1
移
Qcx-1

qcx = 0
移
Kc

kc = 1
bqcyqcykc[y(n - qcy)x(n - qcx)] kc +

移
Qx-1

qx = 0
移
Kx

kx = 1
cqxkxx(n - qx) kx (2)

First, we transform those one鄄dimensional terms to
higher order nonlinearity terms, e. g. , output terms are
changed to y ( n - qy ) ky, cross terms are changed to
[y(n - qcy)x(n - qcx)] kc etc. Ky, Kc and Kx are non鄄
linear order of each term. When Ky, Kc and Kx are all
equal to 1, the expression (2) returns to the original
form of ( 1 ). Variable i and j, N1 and N2 are all
replaced by q and Q to denote memory depth, which is
the general notations for DPD.

Note that, bilinear polynomial may cause instabil鄄
ity owing to the feedback terms. The instable phenome鄄
non occurs when the nonlinear order and / or memory
depth are large enough. In [10], some stability prob鄄
lems of bilinear model are discussed. We do not dis鄄
cuss the stability problem theoretically, but we will
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present a fairly stable model.
When describing a high order nonlinearity, we

find that the cross term in (2 ) has little effect on
improving the modeling accuracy, but these terms
introduce many coefficients which can easily lead to
instability. The cross term is the only nonlinear term in
the original one鄄dimensional bilinear polynomial (1).
However, when we have some modification shown as
(2), each term has the capability to characterize non鄄
linearity. During the simulation, we find that the out鄄
put term in (2) includes enough feedback information
to represent the memory effect and the superiority of
cross term is much less than that of its original format.
Therefore, (2) can be modified in a further step:

y(n) = 移
Qy-1

qy = 1
移
Ky

ky = 1
aqykyy (n - qy) ky +

移
Qx-1

qx = 0
移
Kx

kx = 1
cqxkxx (n - qx) kx (3)

Equation (3) is able to model a system with high
order nonlinearity and deep memory effect. In a real
world application, PA usually deals with signals whose
bandwidth is much less than its center frequency, and
therefore (3) can be further simplified as that of [6].
Assuming that the real input signals x(n) and real out鄄
put signals y(n) are expressed by their baseband com鄄
plex signals xc(n) and yc(n):

x(n) =Re{ej2仔f0nxc(n)} =
ej2仔f0nxc(n) + e - j2仔f0nx*

c (n)
2

(4)

y(n) =Re{ej2仔f0nyc(n)} =
ej2仔f0nyc(n) + e - j2仔f0ny*

c (n)
2

(5)
where (·)* denotes complex conjugate; f0 is the cen鄄
ter frequency, and it is also called carrier frequency.
Given (3), (4) and (5), we have

ej2仔f0nyc(n) + e - j2仔f0ny*
c (n)

2 =

移
Qx-1

qx =0
移
Kx

kx =1
bqxk [x

ej2仔f0nxc(n - qx) + e - j2仔f0nxc(n - qx) ]2

kx

+

移
Qy-1

qy =0
移
Ky

ky =1
aqyk [y

ej2仔f0nyc(n - qy) + e - j2仔f0nyc(n - qy) ]2

ky

(6)

In signal processing, we only concern about signal
components near center frequency. Therefore, we dis鄄
card signals of other frequency components, and obtain
the following equation:

ej2仔f0nyc(n) =

ej2仔f0n移
Qy-1

qy = 1
移
Ky

ky = 1
ky = odd

aqykyyc (n - qy)
(ky + 1)

2 y*
c (n - qy)

(ky - 1)
2 +

ej2仔f0n移
Qx-1

qx = 0
移
Kx

kx = 1
kx = odd

cqxkxxc (n - qx)
(kx + 1)

2 x*
c (n - qx)

(kx - 1)
2

(7)
Combining similar terms and replacing baseband

signals yc(n) and xc(n) with y(n) and x(n) result in

y(n) = 移
Qy-1

qy = 1
移
Ky

ky = 1
ky = odd

aqykyy(n - qy) | y(n - qy) | ky - 1 +

移
Qx-1

qx = 0
移
Kx

kx = 1
kx = odd

cqxkxx(n - qx) | x(n - qx) | kx - 1 (8)

Equation (8) is derived from bilinear polynomial
and is properly modified for DPD application. Com鄄
pared with those Volterra based model, the proposed
model adds past output information to predict current
output and only use those odd order terms. We will
show that the model based on (8) is fairly robust and
outperform traditional Volterra based models.

It should be noted that, there are many other
methods to modify the original bilinear polynomial, as
long as the stability is satisfied. We only discuss (8).

2摇 Model Identification
2郾 1摇 Indirect Learning Architecture

Indirect learning architecture ( ILA) is an effi鄄
cient method for identifying DPD model. It does not
need to construct the PA model, but only uses the out鄄
put data and input data of PA to estimate the coeffi鄄
cients of a DPD model. Fig. 1[2] shows the block dia鄄
gram of ILA. In this architecture, DPD model is iden鄄
tified at training block A, and then inserted between
original input signal x ( n) and PA input. Training
block A uses y ( n) and z( n) to estimate its coeffi鄄
cients, where y(n) and z(n) are the output and input
of PA respectively. (At first, we use x(n) in place of
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z(n). After the DPD is implemented, we use z(n) to
update the coefficients. )

Fig. 1摇 Indirect learning architecture of digital predistortion
摇

2郾 2摇 Algorithms for Coefficients Identification
From ( 8 ) and Fig. 1, “ block A 冶 can be

expressed as

ẑ(n) = 移
Qz-1

qz = 1
移
Kz

kz = 1
kz = odd

aqzkz
寛z(n - qz) | 寛z(n - qz) | kz - 1 +

移
Qy-1

qy = 0
移
Ky

ky = 1
ky = odd

bqykyy(n - qy) | y(n - qy) | ky - 1 (9)

where 寛z denotes the past output information. There are

two major methods to determine 寛z[11] . If 寛z is calculated
through current model coefficients, it is called output鄄

error method, but if 寛z is sampled from z, it is called the
equation鄄error method. We will discuss algorithms for
both methods.

For linearly represented polynomial, it is feasible
to extract the coefficients by using linear system estima鄄
tion theory such as least squares ( LS). Sometimes,
because of high correlation between each element of the
polynomial, the calculation of the inverse matrix tends
to be time consuming and unstable. Orthogonal polyno鄄
mials show great advantages in avoiding numerical
instability[12] .

LS can be applied to equation鄄error method direct鄄
ly. For output鄄error method, we need to set a group of
initial coefficients first, and calculate output ẑ ( n),
ẑ(n - 1), ẑ(n - 2),…, ẑ(n - Qz + 1) iteratively as
time n increases. Then LS is applied to update initial
coefficients. Calculating a new set of output and upda鄄
ting coefficients repeatedly until coefficients converge.

Recursive LS (RLS) is a popular adaptive algo鄄
rithm. Adaptive algorithm is an algorithm which starts
from an initial point, and adjusts the coefficients

dynamically according to newly sampled input and out鄄
put. Compared with LS algorithms, adaptive algorithm
requires less storage space. Once initial value is prop鄄
erly set, the coefficients always converge to stable
states. RLS is also applicable for both equation鄄error
method and output鄄error method. As a result, we
choose RLS to extract the coefficients of (9).

Rewriting (9) in a matrix form:
ẑ(n) = aTu(n) (10)

where a are the coefficients and u(n) are polynomials
of inputs and outputs.

Omitting the tedious and complicated mathemati鄄
cal derivation, the final RLS procedure is
a(n) = a(n - 1) + g(n)[ z(n) - uT(n)a(n - 1)]

(11)

g(n) = C(n - 1)u*(n)
1 + uT(n)C(n - 1)u*(n)

(12)

C(n) = C(n - 1) - g(n)uT(n)C(n - 1) (13)
Equation (13) uses a recursive way to update

a(n) which requires less storage memory and improves
numerical instability.

Note that in the simulation, equation鄄error method
has a slightly better performance than output鄄error
method, and it is easier to implement. Therefore,
allthe following results are calculated by equation鄄error
method.

3摇 Simulation Results
In this section, simulations are implemented to

demonstrate the effectiveness of the proposed modified
bilinear model. All results presented are simulated in
Matlab. Fig. 2 shows the simulation diagram. The
input signal is a three鄄carrier wideband code division
multiple access (WCDMA) signal, and it has peak鄄to鄄
average power ratio (PAPR) of about 6 dB. We will
linearize different PA models, including an odd鄄order鄄
only memory polynomial model and a three鄄branch par鄄
allel Wiener model. The input power is properly adjus鄄
ted to make the PA to operate at about 5 dB power back
off point. During simulation, we first sample the input
and output signals of PA. With these signals, we then
estimate the proposed DPD model coefficients. Finally,
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we cascade the proposed DPD model to the PA, and
test its performance, including power spectral density,
AM / AM characteristic, AM / PM characteristic, nor鄄
malized mean squared error (NMSE) etc. Additional鄄
ly, we will compare the proposed DPD model with
some widely used DPD models, e. g. MP, GMP.

Fig. 2摇 Block diagram of simulation
摇

Odd鄄order鄄only memory polynomial model is
expressed as[8]

y(n) = 移
M

m = 1
m = odd

移
L-1

l = 0
cmlz(n - l) | z(n - l) | m - 1 (14)

The coefficients are extracted from an actual class
AB PA which can be referred from [8].

Set the coefficients [Qz Qy Kz Ky] of (9) to [3 1
3 5]. Fig. 3 shows the power spectral density at the
output of the PA with and without a DPD.

Fig. 3 indicates DPD can bring down the spectral
regrowth remarkably. The proposed modified bilinear
polynomial model outperforms traditional DPD models
obviously.

Fig. 3摇 Power spectral density with and without DPD
摇

Tab. 1 lists the number of coefficients and NMSE
performance of different DPDs shown in Fig. 3.

It can be seen from Tab. 1, GMP uses a large
number of coefficients but only gets a small progress
compared with MP. However, the proposed modified
bilinear model shows great improvement on linearizing
PA, and uses the fewest number of coefficients to bring

down the NMSE to - 65郾 08 dB.

Tab. 1摇 Comparison for coefficients and NMSE of different
DPD models (odd鄄order鄄only memory polynomial
PA model)

Model
Model

dimensions

Number of

coefficients

NMSE /

dB
MP [K Q] = [5 2] 10 - 51郾 54

GMP
[Ka Qa Kb Qb Lb Kc Qc Lc] =

[5 2 3 2 1 3 2 1]
22 - 53郾 77

Modified

bilinear model

[Qz Qy Kz Ky] =

[3 1 3 5]
7 - 65郾 08

摇 摇 The AM / AM and AM / PM characteristics of PA
before and after the proposed DPD are given in Fig. 4
and Fig. 5. It shows that the phase distortion can be
decreased very well. (To show AM / AM characteristics
clearly, we only draw a part range of the AM / AM
plot. )

Fig. 4 摇 AM / AM characteristics for odd鄄order鄄only memory
polynomial with and without bilinear model based
DPD

摇

Fig. 5 摇 AM / PM characteristics for odd鄄order鄄only memory
polynomial with and without bilinear model based
DPD

摇
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摇 摇 We also use three鄄branch parallel Wiener model
as our PA for comparison. As shown in Fig. 6, Hi(·)
is an Linear Time Invariant (LTI) block, and F i (·)
is a memoryless nonlinear block.

Fig. 6摇 Parallel Wiener model diagram
摇

All parameters of this Parallel Wiener model can
be referred from [8]. We still set the coefficients [Qz

Qy Kz Ky] of (9) to [3 1 3 5]. The rectified AM / AM
and AM / PM are shown in Fig. 7 and Fig. 8.

Fig. 7 摇 AM / AM characteristics for three鄄branch parallel
Wiener model with and without bilinear model
based DPD

摇

Fig. 8摇 AM / PM characteristics for three鄄branch parallel Wie鄄
ner model with and without bilinear model based DPD

摇

Furthermore, the number of coefficients and
NMSE performance are listed in Tab. 2.

For three鄄branch parallel Wiener model, bilinear
model still shows the best modeling accuracy. In Tab.

2, bilinear model uses the fewest coefficients and
achieves the best NMSE performance.

Tab. 2摇 Comparison for coefficients and NMSE of different
DPD models ( three鄄branch parallel Wiener PA
model)

Model
Model

dimensions

Number of

coefficients

NMSE /

dB

MP [K Q] = [5 2] 10 - 59郾 17

GMP
[Ka Qa Kb Qb Lb Kc Qc Lc] =

[5 2 3 2 1 3 2 1]
22 - 61郾 23

Modified

bilinear model

[Qz Qy Kz Ky] =

[3 1 3 5]
7 - 70郾 32

摇 摇 We use different PAs to test our DPD model.
Results show that our modified bilinear polynomial
model is efficient and robust for both odd鄄order鄄only
memory polynomial PA model and a three鄄branch par鄄
allel Wiener PA model. It can compensate the magni鄄
tude and phase nonlinearity of PA very well. The most
important thing is that it uses relatively fewer coeffi鄄
cients to express high order nonlinearity and deep
memory effect than traditional DPD models.

4摇 Conclusions
A novel model for PA linearization is proposed.

This model uses feedback terms to improve its perform鄄
ance. Proper modification is made to the model to
decrease its coefficients and fit applications in DPD.
Appropriate RLS algorithms are derived to extract coef鄄
ficients. Simulation results show that the model can
effectively linearize PA in both magnitude and phase.
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